Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 2, Pages 390–392
DOI: https://doi.org/10.4213/rm10069e
(Mi rm10069)
 

This article is cited in 4 scientific papers (total in 4 papers)

Brief communications

Higher-order traps for some strongly degenerate quantum control systems

B. O. Volkov, A. N. Pechen

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Funding agency Grant number
Russian Science Foundation 22-11-00330
This work was supported by the Russian Science Foundation under grant no. 22-11-00330, https://rscf.ru/en/project/22-11-00330/.
Received: 01.08.2022
Bibliographic databases:
Document Type: Article
MSC: 81Q93
Language: English
Original paper language: Russian

Control of quantum systems attracts high interest due to fundamental reasons and applications to quantum technologies [1]. Controlled dynamics of a $N$-level closed quantum system is described by Schrödinger’s equation

$$ \begin{equation*} i\dot U_t^f=(H_0+f(t)V)U_t^f \end{equation*} \notag $$
with the initial condition $U_{t=0}^f=\mathbb I$ for a unitary evolution operator $U_t^f$ in the Hilbert space ${\mathcal H}=\mathbb C^N$. Here $H_0$ and $V$ are the free and interaction Hamiltonians (Hermitian operators in ${\cal H}$), $f\in\mathfrak{H}^0:=L_2([0,T];\mathbb R)$ is a control function, and $T>0$ is some target time. Consider a quantum control problem with Mayer-type objective functional of the form $J_O={\rm Tr}(OU_T^f\rho_0 U_T^{f\unicode{8224}})\to\max$, where $\rho_0$ is the initial density matrix (a Hermitian operator in $\cal H$ such that $\rho_0\geqslant 0$, $\operatorname{Tr}\rho_0=1$) and $O$ is a target observable (a Hermitian operator in $\mathcal H$). A quantum system with Hamiltonian $(H_0,V)$ is called completely controllable if there exists time $T_{\min}$ such that for all $T\geqslant T_{\min}$ and $U\in U(N)$ there exists a control $f\in \mathfrak{H}^0$ such that $U=U_T^fe^{i\alpha}$ for some $\alpha\in \mathbb{R}$.

A question important for quantum control is to establish, for a controlled system, whether or not the objective has a trapping behaviour [2]. An $n$th-order trap for the objective functional $J_O$, where $n\geqslant2$, is a control $f_0\in \mathfrak{H}^0$ such that (a) $f_0$ is not a point of global maximum of $J_O$ and (b) the Taylor expansion of the objective functional at the point $f_0$ has the form

$$ \begin{equation*} J_O(f_0+\delta f)=J_O(f_0)+\sum_{j=2}^{n} \frac 1{j!}J^{(j)}_O(f_0) (\delta f,\dots,\delta f)+o(\|\delta f\|^{n})\quad\text{ as } \|\delta f\|\to 0, \end{equation*} \notag $$
where the non-zero functional $R(\delta f):=\sum_{j=2}^{n}(j!)^{-1}J^{(j)}_O(f_0)(\delta f,\dots,\delta f)$ is such that for any $\delta f\in\mathfrak{H}^0$ there exists $\varepsilon>0$ such that $R(t\delta f)\leqslant 0$ for all $t\in (-\varepsilon,\varepsilon)$. The analysis of traps is important since traps, if they existed, would determine the level of difficulty of the search for globally optimal controls, including in practical applications. The absence of traps for 2-level quantum systems ($N=2$) has been proved [3]–[5], some examples of third-order traps have been constructed for special $N$-level degenerate quantum systems with $N\geqslant 3$ [6], [7]. Traps have also been discovered for some systems with $N\geqslant 4$ [8]. In this work we prove the existence of traps of an arbitrary order for some special highly degenerate quantum systems.

We consider $N$-level quantum system with Hamiltonian $(H_0,V)$:

$$ \begin{equation*} H_0=a|1\rangle \langle1|+\sum_{k=2}^N b|k\rangle \langle k|\quad\text{and}\quad V=\sum_{k=1}^{N-1}\overline{v}_{k}|k\rangle\langle k+1|+v_{k}|k+1\rangle\langle k|. \end{equation*} \notag $$
Here $a\ne b$ and all the $v_{k}\in \mathbb{R}$ are non-zero. It is known [9], [8], that such a system is completely controllable for any $N$ (a generalization to the case when $v_{k}\in\mathbb C$ for $N=4$ was obtained in [10]).

Theorem. Let $N\geqslant 3$, $\rho_0=|N\rangle \langle N|$ and $O=\sum_{k=1}^N \lambda_k |k\rangle\langle k|$, where $\lambda_1>\lambda_N>\lambda_{N-1}$. Then for any $T\geqslant T_{\min}$ the control $f_0\equiv 0$ is a trap of the $(2N-3)$d order for $J_O$.

Proof. For such $\rho_0$ and $O$ the complete controllabillity of the quantum system $(H_0,V)$ implies that the control $f_0\equiv0$ is not a point of global extremum of $J_O$ for $T\geqslant T_{\min}$ [6]. Without loss of generality we can assume that $\lambda_N=0$ [6]. Let $V_t:=e^{itH_0}Ve^{-itH_0}$ and let $A^n_{lk}\colon \mathfrak{H}^0 \to\mathbb{C}$ be the form of order $n$ defined by

$$ \begin{equation*} A^n_{lk}\langle f\rangle:=\int_0^Tdt_1\int_0^{t_1}dt_2\dotsb \int_0^{t_{n-1}}dt_n\,f(t_1)\cdots f(t_n)\langle l|V_{t_1}\dotsb V_{t_n}|k\rangle. \end{equation*} \notag $$
Let $A^0_{lk}=\delta_{lk}$ ($\delta_{lk}$ is the Kronecker symbol). By direct calculations, one can obtain a formula for the Fréchet differential of order $n$ of the objective functional $J_O$ at $f_0$:
$$ \begin{equation} \frac 1{n!}J_O^{(n)}(f_0)(f,\dots,f)=\sum_{j=0}^n\,\sum_{l=1}^{N-1} (-1)^{n-j}i^{n} \lambda_l A^j_{lN}\langle f \rangle\overline{A^{n-j}_{lN}\langle f \rangle}. \end{equation} \tag{1} $$
For $n=1$ we get that $J'_O(f_0)=0$. Since $\langle l|V|N\rangle=0$ for $l\neq N-1$, we have
$$ \begin{equation*} \frac 1{2!}J''_O(f_0)(f,f)=\lambda_{N-1}|A^1_{(N-1)N}\langle f\rangle|^2=\lambda_{N-1}v^2_{N-1}\biggl(\,\int_0^Tf(t)\,dt\biggr)^2. \end{equation*} \notag $$
We introduce the space $\mathfrak{H}^{1}=\biggl\{f \in \mathfrak{H}^0\colon \displaystyle\int_0^Tf(t)\,dt=0\biggr\}$. Then $J''_O(f_0)(f,f)<0$ for $f\in \mathfrak{H}^0 \setminus\mathfrak{H}^1$ and $J''_O(f_0)(f,f)=0$ for $f\in \mathfrak{H}^1$. Note that the following holds true for the quantum system $(H_0,V)$. If $1<l$ and $n\leqslant N-1$, then $\langle l|V_{s_n}\cdots V_{s_1}|N\rangle=\langle l|V^n|N\rangle$, and so the form $A^n_{lN}\langle f\rangle=\dfrac{\langle l|V^n|N\rangle}{n!}\biggl(\,\displaystyle\int_0^Tf(t)\,dt\biggr)^{n}$ vanishes on $\mathfrak{H}^{1}$. Also, if $n<N-1$, then $\langle 1|V_{s_n}\cdots V_{s_1}|N\rangle=0$, and so $A^n_{1N}=0$. Then it follows from (1) that $J_O^{(n)}(f_0)(f,\dots,f)=0$ $J^{(n)}_O(f_0)(f,\ldots,f)=0$ for $3\leqslant n \leqslant 2N-3$ and $f\in \mathfrak{H}^1$. Moreover,
$$ \begin{equation*} \begin{aligned} \, &\frac{1}{(2N-2)!}J^{(2N-2)}_O(f_0)(f,\dots,f)= \lambda_1|A_{1N}^{N-1}\langle f \rangle|^2 \\ &\qquad\qquad\qquad=\lambda_1\biggl|\int_{[0,T]^{N-1}}K(t_1,\dots,t_{N-1}) f(t_1)\cdots f(t_{N-1})\,dt_1\cdots dt_{N-1}\biggr|^2\geqslant 0 \end{aligned} \end{equation*} \notag $$
for $f\in\mathfrak{H}^1$, where
$$ \begin{equation*} K(t_1,t_2,\dots,t_{N-1})=\frac1{(N-1)!}v_{1}v_{2}\cdots v_{N-1}e^{i(a-b)\max(t_1,\dots,t_{N-1})}. \end{equation*} \notag $$
Thus the control $f_0\equiv 0$ is a trap of the $(2N-3)$d order. $\Box$

The authors are grateful to S. A. Kuznetsov for pointing out to them the proof of controllability in [9].


Bibliography

1. C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, EPJ Quant. Tech., 9 (2022), 19, 60 pp.  crossref
2. H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, Science, 303:5666 (2004), 1998–2001  crossref  adsnasa
3. A. Pechen and N. Il'in, Phys. Rev. A (3), 86:5 (2012), 052117, 6 pp.  mathnet  crossref  adsnasa
4. A. N. Pechen and N. B. Il'in, Uspekhi Mat. Nauk, 70:4(424) (2015), 211–212  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 70:4 (2015), 782–784  crossref  adsnasa
5. B. O. Volkov, O. V. Morzhin, and A. N. Pechen, J. Phys. A, 54:21 (2021), 215303, 23 pp.  mathnet  crossref  mathscinet  adsnasa
6. A. N. Pechen and D. J. Tannor, Phys. Rev. Lett., 106:12 (2011), 120402, 3 pp.  crossref  adsnasa
7. A. N. Pechen and D. J. Tannor, Israel J. Chem., 52:5 (2012), 467–472  mathnet  crossref
8. P. de Fouquieres and S. G. Schirmer, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021, 24 pp.  crossref  mathscinet  zmath
9. S. G. Schirmer, H. Fu, and A. I. Solomon, Phys. Rev. A (3), 63:6 (2001), 063410, 8 pp.  crossref  adsnasa
10. S. A. Kuznetsov and A. N. Pechen, Lobachevskii J. Math., 43:10 (2022), 1683–1692  crossref

Citation: B. O. Volkov, A. N. Pechen, “Higher-order traps for some strongly degenerate quantum control systems”, Russian Math. Surveys, 78:2 (2023), 390–392
Citation in format AMSBIB
\Bibitem{VolPec23}
\by B.~O.~Volkov, A.~N.~Pechen
\paper Higher-order traps for some strongly degenerate quantum control systems
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 2
\pages 390--392
\mathnet{http://mi.mathnet.ru//eng/rm10069}
\crossref{https://doi.org/10.4213/rm10069e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4653853}
\zmath{https://zbmath.org/?q=an:1544.81061}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..390V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001086942800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85175192315}
Linking options:
  • https://www.mathnet.ru/eng/rm10069
  • https://doi.org/10.4213/rm10069e
  • https://www.mathnet.ru/eng/rm/v78/i2/p191
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024