|
This article is cited in 4 scientific papers (total in 4 papers)
Brief communications
Higher-order traps for some strongly degenerate quantum control systems
B. O. Volkov, A. N. Pechen Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Received: 01.08.2022
Control of quantum systems attracts high interest due to fundamental reasons and applications to quantum technologies [1]. Controlled dynamics of a $N$-level closed quantum system is described by Schrödinger’s equation
$$
\begin{equation*}
i\dot U_t^f=(H_0+f(t)V)U_t^f
\end{equation*}
\notag
$$
with the initial condition $U_{t=0}^f=\mathbb I$ for a unitary evolution operator $U_t^f$ in the Hilbert space ${\mathcal H}=\mathbb C^N$. Here $H_0$ and $V$ are the free and interaction Hamiltonians (Hermitian operators in ${\cal H}$), $f\in\mathfrak{H}^0:=L_2([0,T];\mathbb R)$ is a control function, and $T>0$ is some target time. Consider a quantum control problem with Mayer-type objective functional of the form $J_O={\rm Tr}(OU_T^f\rho_0 U_T^{f\unicode{8224}})\to\max$, where $\rho_0$ is the initial density matrix (a Hermitian operator in $\cal H$ such that $\rho_0\geqslant 0$, $\operatorname{Tr}\rho_0=1$) and $O$ is a target observable (a Hermitian operator in $\mathcal H$). A quantum system with Hamiltonian $(H_0,V)$ is called completely controllable if there exists time $T_{\min}$ such that for all $T\geqslant T_{\min}$ and $U\in U(N)$ there exists a control $f\in \mathfrak{H}^0$ such that $U=U_T^fe^{i\alpha}$ for some $\alpha\in \mathbb{R}$.
A question important for quantum control is to establish, for a controlled system, whether or not the objective has a trapping behaviour [2]. An $n$th-order trap for the objective functional $J_O$, where $n\geqslant2$, is a control $f_0\in \mathfrak{H}^0$ such that (a) $f_0$ is not a point of global maximum of $J_O$ and (b) the Taylor expansion of the objective functional at the point $f_0$ has the form
$$
\begin{equation*}
J_O(f_0+\delta f)=J_O(f_0)+\sum_{j=2}^{n} \frac 1{j!}J^{(j)}_O(f_0) (\delta f,\dots,\delta f)+o(\|\delta f\|^{n})\quad\text{ as } \|\delta f\|\to 0,
\end{equation*}
\notag
$$
where the non-zero functional $R(\delta f):=\sum_{j=2}^{n}(j!)^{-1}J^{(j)}_O(f_0)(\delta f,\dots,\delta f)$ is such that for any $\delta f\in\mathfrak{H}^0$ there exists $\varepsilon>0$ such that $R(t\delta f)\leqslant 0$ for all $t\in (-\varepsilon,\varepsilon)$. The analysis of traps is important since traps, if they existed, would determine the level of difficulty of the search for globally optimal controls, including in practical applications. The absence of traps for 2-level quantum systems ($N=2$) has been proved [3]–[5], some examples of third-order traps have been constructed for special $N$-level degenerate quantum systems with $N\geqslant 3$ [6], [7]. Traps have also been discovered for some systems with $N\geqslant 4$ [8]. In this work we prove the existence of traps of an arbitrary order for some special highly degenerate quantum systems.
We consider $N$-level quantum system with Hamiltonian $(H_0,V)$:
$$
\begin{equation*}
H_0=a|1\rangle \langle1|+\sum_{k=2}^N b|k\rangle \langle k|\quad\text{and}\quad V=\sum_{k=1}^{N-1}\overline{v}_{k}|k\rangle\langle k+1|+v_{k}|k+1\rangle\langle k|.
\end{equation*}
\notag
$$
Here $a\ne b$ and all the $v_{k}\in \mathbb{R}$ are non-zero. It is known [9], [8], that such a system is completely controllable for any $N$ (a generalization to the case when $v_{k}\in\mathbb C$ for $N=4$ was obtained in [10]).
Theorem. Let $N\geqslant 3$, $\rho_0=|N\rangle \langle N|$ and $O=\sum_{k=1}^N \lambda_k |k\rangle\langle k|$, where $\lambda_1>\lambda_N>\lambda_{N-1}$. Then for any $T\geqslant T_{\min}$ the control $f_0\equiv 0$ is a trap of the $(2N-3)$d order for $J_O$.
Proof. For such $\rho_0$ and $O$ the complete controllabillity of the quantum system $(H_0,V)$ implies that the control $f_0\equiv0$ is not a point of global extremum of $J_O$ for $T\geqslant T_{\min}$ [6]. Without loss of generality we can assume that $\lambda_N=0$ [6]. Let $V_t:=e^{itH_0}Ve^{-itH_0}$ and let $A^n_{lk}\colon \mathfrak{H}^0 \to\mathbb{C}$ be the form of order $n$ defined by
$$
\begin{equation*}
A^n_{lk}\langle f\rangle:=\int_0^Tdt_1\int_0^{t_1}dt_2\dotsb \int_0^{t_{n-1}}dt_n\,f(t_1)\cdots f(t_n)\langle l|V_{t_1}\dotsb V_{t_n}|k\rangle.
\end{equation*}
\notag
$$
Let $A^0_{lk}=\delta_{lk}$ ($\delta_{lk}$ is the Kronecker symbol). By direct calculations, one can obtain a formula for the Fréchet differential of order $n$ of the objective functional $J_O$ at $f_0$:
$$
\begin{equation}
\frac 1{n!}J_O^{(n)}(f_0)(f,\dots,f)=\sum_{j=0}^n\,\sum_{l=1}^{N-1} (-1)^{n-j}i^{n} \lambda_l A^j_{lN}\langle f \rangle\overline{A^{n-j}_{lN}\langle f \rangle}.
\end{equation}
\tag{1}
$$
For $n=1$ we get that $J'_O(f_0)=0$. Since $\langle l|V|N\rangle=0$ for $l\neq N-1$, we have
$$
\begin{equation*}
\frac 1{2!}J''_O(f_0)(f,f)=\lambda_{N-1}|A^1_{(N-1)N}\langle f\rangle|^2=\lambda_{N-1}v^2_{N-1}\biggl(\,\int_0^Tf(t)\,dt\biggr)^2.
\end{equation*}
\notag
$$
We introduce the space $\mathfrak{H}^{1}=\biggl\{f \in \mathfrak{H}^0\colon \displaystyle\int_0^Tf(t)\,dt=0\biggr\}$. Then $J''_O(f_0)(f,f)<0$ for $f\in \mathfrak{H}^0 \setminus\mathfrak{H}^1$ and $J''_O(f_0)(f,f)=0$ for $f\in \mathfrak{H}^1$. Note that the following holds true for the quantum system $(H_0,V)$. If $1<l$ and $n\leqslant N-1$, then $\langle l|V_{s_n}\cdots V_{s_1}|N\rangle=\langle l|V^n|N\rangle$, and so the form $A^n_{lN}\langle f\rangle=\dfrac{\langle l|V^n|N\rangle}{n!}\biggl(\,\displaystyle\int_0^Tf(t)\,dt\biggr)^{n}$ vanishes on $\mathfrak{H}^{1}$. Also, if $n<N-1$, then $\langle 1|V_{s_n}\cdots V_{s_1}|N\rangle=0$, and so $A^n_{1N}=0$. Then it follows from (1) that $J_O^{(n)}(f_0)(f,\dots,f)=0$ $J^{(n)}_O(f_0)(f,\ldots,f)=0$ for $3\leqslant n \leqslant 2N-3$ and $f\in \mathfrak{H}^1$. Moreover,
$$
\begin{equation*}
\begin{aligned} \, &\frac{1}{(2N-2)!}J^{(2N-2)}_O(f_0)(f,\dots,f)= \lambda_1|A_{1N}^{N-1}\langle f \rangle|^2 \\ &\qquad\qquad\qquad=\lambda_1\biggl|\int_{[0,T]^{N-1}}K(t_1,\dots,t_{N-1}) f(t_1)\cdots f(t_{N-1})\,dt_1\cdots dt_{N-1}\biggr|^2\geqslant 0 \end{aligned}
\end{equation*}
\notag
$$
for $f\in\mathfrak{H}^1$, where
$$
\begin{equation*}
K(t_1,t_2,\dots,t_{N-1})=\frac1{(N-1)!}v_{1}v_{2}\cdots v_{N-1}e^{i(a-b)\max(t_1,\dots,t_{N-1})}.
\end{equation*}
\notag
$$
Thus the control $f_0\equiv 0$ is a trap of the $(2N-3)$d order. $\Box$
The authors are grateful to S. A. Kuznetsov for pointing out to them the proof of controllability in [9].
|
|
|
Bibliography
|
|
|
1. |
C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, EPJ Quant. Tech., 9 (2022), 19, 60 pp. |
2. |
H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, Science, 303:5666 (2004), 1998–2001 |
3. |
A. Pechen and N. Il'in, Phys. Rev. A (3), 86:5 (2012), 052117, 6 pp. |
4. |
A. N. Pechen and N. B. Il'in, Uspekhi Mat. Nauk, 70:4(424) (2015), 211–212 ; English transl. in Russian Math. Surveys, 70:4 (2015), 782–784 |
5. |
B. O. Volkov, O. V. Morzhin, and A. N. Pechen, J. Phys. A, 54:21 (2021), 215303, 23 pp. |
6. |
A. N. Pechen and D. J. Tannor, Phys. Rev. Lett., 106:12 (2011), 120402, 3 pp. |
7. |
A. N. Pechen and D. J. Tannor, Israel J. Chem., 52:5 (2012), 467–472 |
8. |
P. de Fouquieres and S. G. Schirmer, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021, 24 pp. |
9. |
S. G. Schirmer, H. Fu, and A. I. Solomon, Phys. Rev. A (3), 63:6 (2001), 063410, 8 pp. |
10. |
S. A. Kuznetsov and A. N. Pechen, Lobachevskii J. Math., 43:10 (2022), 1683–1692 |
Citation:
B. O. Volkov, A. N. Pechen, “Higher-order traps for some strongly degenerate quantum control systems”, Russian Math. Surveys, 78:2 (2023), 390–392
Linking options:
https://www.mathnet.ru/eng/rm10069https://doi.org/10.4213/rm10069e https://www.mathnet.ru/eng/rm/v78/i2/p191
|
|