Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 5, Pages 946–948
DOI: https://doi.org/10.4213/rm10067e
(Mi rm10067)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief Communications

Spectral problem for the vector Stieltjes string

A. I. Aptekareva, V. A. Kalyaginb

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
b HSE University
References:
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-283
This research was carried out at the Moscow Centre for Fundamental and Applied Mathematics and supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2022-283).
Received: 01.08.2022
Bibliographic databases:
Document Type: Article
MSC: 34L05, 47B36
Language: English
Original paper language: Russian

1. The Stieltjes string

The system of difference equations

$$ \begin{equation} \begin{cases} \theta_{k+1}-\theta_k=m_{k+1}z\eta_k, & k\in \mathbb{Z}_+, \ \theta_0=0, \\ \eta_k-\eta_{k-1}=l_k\theta_k, & k\in \mathbb{N}, \ \hphantom{{}_{+}} \eta_0=1, \end{cases} \end{equation} \tag{1} $$
determines sequentially, from the parameters $\{m_k,l_k\}$ of a string, the characteristics $\{\eta_k, \theta_k\}$ of its oscillations, in their dependence on the spectral parameter $z$. On the other hand, the solutions $\{\theta_k,\eta_k\}$ of (1) and the solutions $\{\theta^{(1)}_k,\eta^{(1)}_k\}$ of the same system corresponding to the initial data $\theta^{(1)}_0=1$ and $\eta^{(1)}_0=0$ form convergents of a classical Stieltjes continued fraction [1], [2]:
$$ \begin{equation} S_n(z)=\begin{cases} \theta^{(1)}_k/\theta_k, & n=2k-1,\\ \eta^{(1)}_k/\eta_k, & n=2k, \end{cases}\ \ k\in \mathbb{N};\quad S(z)=\frac{1|}{|m_1 z\,+}\,\,\frac{1|}{|l_1\,+}\,\, \frac{1|}{|m_2z\,+}\,\,\frac{1|}{|l_2+\dotsb}\,. \end{equation} \tag{2} $$

The equations of the Stieltjes string (1) are prototypical for many remarkable systems of operators, such as the Krein string [2], [3] or canonical de Branges systems [4], [5].

Another continued fraction equivalent to (2) and the corresponding recurrence relations has the following form:

$$ \begin{equation} S(z)=\frac{1|}{|z\,+}\,\frac{a_1|}{|1\,+}\,\frac{a_2|}{|z\,+}\, \frac{a_3|}{|1{}+{}\cdots}\,,\quad A_{n+1}=\epsilon_nA_n+a_nA_{n-1}, \end{equation} \tag{3} $$
where $\epsilon_n=z$ for $n=2k$ and $\epsilon_n=1$ for $n \ne 2k$, $k\in \mathbb{N}$; here $A_{-1}=0$ and $A_0=1$ for the numerators, while $A^{(1)}_{-1}=1$ and $A^{(1)}_0=1$ for the denominators of convergents. After cancellations, convergents of (2) coincides with convergents of (3).

If $m_k,l_k>0$ ($a_k>0$) and the associated moment problem is determinate, then the Stieltjes fraction converges locally uniformly in $\mathbb{C} \setminus [0,+\infty)$ to a Stieltjes function $S(z)$ generated by some measure $\sigma>0$:

$$ \begin{equation} S_n(z) \to S(z)=\int_0^{+\infty}\frac{d\sigma(x)}{z+x}\,, \qquad \operatorname{supp} \sigma \in \mathbb{R}_+. \end{equation} \tag{4} $$

2. The vector Stieltjes fraction

The concept of a vector continued fraction is based on the Jacobi–Perron procedure of taking the inverse of a vector $\mathbf{c}=(c_1,c_2,\dots,c_d) \in \mathbb{C}^d$, namely, $\mathbf{c}^{-1}=\boldsymbol{1}/\mathbf{c}= (1/c_d,c_1/c_d,\dots,c_{d-1}/c_d)$.

In this paper we consider a vector generalization of the Stieltjes fraction (2) and the related system of difference equations, which is similar to (1).

Theorem 1. Given a vector continued fraction $\mathbf{S}(z)$, assume that $m_k,l_{1,k},l_{2,k} \ne 0$:

$$ \begin{equation} \mathbf{S}(z)=(S_1(z),S_2(z))=\frac{\mathbf{1}|}{|(0,m_1z)}+ \frac{\mathbf{1}|}{|(0,l_{1,1})}+\frac{\mathbf{1}|}{|(0,l_{2,1})}+ \frac{\mathbf{1}|}{|(0,m_2 z)}+\cdots\,. \end{equation} \tag{5} $$
Then the numerators and denominators of its convergents
$$ \begin{equation} \mathbf{S}_{3k-2}(z)=\biggl(\frac{\theta^{(1)}_{1,k}}{\theta_{1,k}}\,, \frac{\theta^{(2)}_{1,k}}{\theta_{1,k}}\biggr),\quad \mathbf{S}_{3k-1}(z)=\biggl(\frac{\theta^{(1)}_{2,k}}{\theta_{2,k}}\,, \frac{\theta^{(2)}_{2,k}}{\theta_{2,k}}\biggr),\quad \mathbf{S}_{3k}=\biggl(\frac{\eta^{(1)}_k}{\eta_k}\,, \frac{\eta^{(2)}_k}{\eta_k}\biggr), \end{equation} \tag{6} $$
$k\in \mathbb{N}$, satisfy the system of difference equations
$$ \begin{equation} \begin{cases} \theta_{1,k+1}-\theta_{1,k}=m_{k+1}z\eta_k, & k\in \mathbb{Z}_+,\ \theta_{1,0}=0, \\ \theta_{2,k}-\theta_{2,k-1}=l_{1,k} \theta_{1,k}, & k\in \mathbb{N}, \ \hphantom{{}_{+}}\theta_{2,0}=0, \\ \eta_k-\eta_{k-1}=l_{2,k}\theta_{2,k}, & k\in \mathbb{N}, \ \hphantom{{}_{2,+}}\eta_0=1. \end{cases} \end{equation} \tag{7} $$
If $m_k, l_{1,k}, l_{2,k} > 0$, then similarly to (4) there is uniform convergence
$$ \begin{equation} \mathbf{S}_n(z)=(S_{1,n}(z), S_{2,n}(z)) \to \mathbf{S}(z)= (S_1(z),S_2(z)), \qquad S_j(z)=\int_0^{+\infty}\frac{d\sigma_j(x)}{z+x}\,. \end{equation} \tag{8} $$

Note that in [6] a vector generalization of the equivalent Stieltjes fraction (3) was considered. For the numerators $A^{(1)}_n$ and $A^{(2)}_n$ and denominators $A_n$ of convergents we obtained

$$ \begin{equation} A_{n+1}=\epsilon_nA_n+a_{n-1}A_{n-2}, \quad \epsilon_n=z \;\,\text{for } n=3k \quad\text{and}\quad \epsilon_n=1 \;\,\text{for }n \ne 3k,\quad k\in \mathbb{N}; \end{equation} \tag{9} $$
here
$$ \begin{equation*} a_{3k-2}\,{=}\,(m_kl_{1,k}l_{2,k})^{-1},\ a_{3k-1}\,{=}\,(m_{k+1}l_{1,k}l_{2,k})^{-1},\text{ and } a_{3k}\,{=}\,(m_{k+1}l_{1,k+1}l_{2,k+1})^{-1}. \end{equation*} \notag $$

3. The spectral problem

It is more convenient to solve the direct spectral problem of finding $(\sigma_1,\sigma_2)$ from (8) in terms of the coefficients $\{a_n\}$ in (9). It is known [7] that the transformation $f_j(z)=z^{j+1}S_j(z^3)$, $j=1,2$, takes the Stieltjes system of functions to the Nikishin system $f=(f_1,f_2)$ generated by the measures $d\mu_j(x)=d\sigma_j(x^3)$.

A Nikishin system if one of the basic systems of functions for which the denominators of Hermite–Padé approximants $\{Q_n(z)\}$ are multiply orthogonal polynomials with respect to a system of measures $(\mu_1,\mu_2)$ [8]. For applications of Nikishin systems to the spectral theory of Schrödinger operators on graphs, see [9] and [10].

We have

$$ \begin{equation} Q_{n+1}(x)=x Q_n(x)-a_{n-2}Q_{n-2}(x),\text{ where } Q_0(x)=1,\ Q_1(x)=x,\ Q_2(x)=x^2. \end{equation} \tag{10} $$
Thus, the direct spectral problem for the vector Stieltjes string reduces to finding the orthogonality measures $(\mu_1,\mu_2)$ from the coefficients of (10).

Let $W(z)$ be the algebraic function satisfying $W^3-zW^2+1=0$, with branches such that $W_0(\infty)=\infty$ and $\operatorname{Im} W_2=0$ on $[0,\alpha)$, where $\alpha:=(27/4)^{1/3}$. Let $\{Q_n^{(j)}\}_{j=1,2}$ denote the other two solutions of (10) corresponding to the initial data $Q^{(1)}_0(x)=0$, $Q^{(1)}_1(x)=1$, $Q^{(1)}_2(x)=x$, and $Q^{(2)}_0(x)=0$, $Q^{(2)}_1(x)=0$, $Q^{(2)}_2(x)=1$, and let

$$ \begin{equation*} D_n(x):=\begin{vmatrix} Q_n(x) & Q_{n+1}(x)& W_2^2(x) \\ Q_{n-1}(x) & Q_n(x) & W_2(x) \\ Q_{n-2}(x) & Q_{n-1}(x) & 1 \end{vmatrix} \end{equation*} \notag $$
and
$$ \begin{equation*} D_n^{(j)}(x):=\begin{vmatrix} Q_n(x) & Q^{(j)}_n(x)& W_2^2(x) \\ Q_{n-1}(x) & Q^{(j)}_{n-1}(x) & W_2(x) \\ Q_{n-2}(x) & Q^{(j)}_{n-2}(x) & 1 \end{vmatrix}. \end{equation*} \notag $$

Theorem 2. If $\sum_{n=1}^{\infty} |a_n-1|<\infty$, then $d\mu_j(x)=\rho_j(x)\,dx$ and, uniformly in $x$,

$$ \begin{equation*} \rho_j(x)=\lim_{n \to \infty}\frac{W_1-W_0}{2 \pi i}\, \frac{D^{(j)}_n(x)}{ D_n(x)}\,, \qquad x \in K \Subset (0,\alpha), \quad j=1,2. \end{equation*} \notag $$


Bibliography

1. T.-J. Stieltjes, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8:4 (1894), J1–J122  crossref  mathscinet  zmath
2. M. G. Krein, Dokl. Akad. Nauk SSSR, 87 (1952), 881–884 (Russian)  mathscinet  zmath
3. S. A. Denisov, IMRS Int. Math. Res. Surv., 2006:2 (2006), 54517, 148 pp.  crossref  mathscinet  zmath
4. L. de Branges, Trans. Amer. Math. Soc., 99 (1961), 118–152  crossref  mathscinet  zmath
5. R. Romanov, Trans. Amer. Math. Soc., 369:2 (2017), 1061–1078  crossref  mathscinet  zmath
6. A. Aptekarev, V. Kaliaguine (Kalyagin), and J. Van Iseghem, Constr. Approx., 16:4 (2000), 487–524  crossref  mathscinet  zmath
7. A. I. Aptekarev, V. A. Kalyagin, and E. B. Saff, Constr. Approx., 30:2 (2009), 175–223  crossref  mathscinet  zmath
8. S. P. Suetin, Uspekhi Mat. Nauk, 76:3(459) (2021), 183–184  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 76:3 (2021), 543–545  crossref  adsnasa
9. S. A. Denisov and M. L. Yattselev, Adv. Math., 396 (2022), 108114, 79 pp.  crossref  mathscinet  zmath
10. A. I. Aptekarev and V. G. Lysov, Uspekhi Mat. Nauk, 76:4(460) (2021), 179–180  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 76:4 (2021), 726–728  crossref  adsnasa

Citation: A. I. Aptekarev, V. A. Kalyagin, “Spectral problem for the vector Stieltjes string”, Russian Math. Surveys, 77:5 (2022), 946–948
Citation in format AMSBIB
\Bibitem{AptKal22}
\by A.~I.~Aptekarev, V.~A.~Kalyagin
\paper Spectral problem for the vector Stieltjes string
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 5
\pages 946--948
\mathnet{http://mi.mathnet.ru//eng/rm10067}
\crossref{https://doi.org/10.4213/rm10067e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582590}
\zmath{https://zbmath.org/?q=an:1523.39006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..946A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992306600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165359667}
Linking options:
  • https://www.mathnet.ru/eng/rm10067
  • https://doi.org/10.4213/rm10067e
  • https://www.mathnet.ru/eng/rm/v77/i5/p187
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:373
    Russian version PDF:52
    English version PDF:67
    Russian version HTML:217
    English version HTML:78
    References:77
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024