|
This article is cited in 1 scientific paper (total in 1 paper)
Brief Communications
Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation
V. G. Zvyagin, V. P. Orlov Voronezh State University
Received: 15.07.2022
We consider the motion on the interval of time $[0,T]$ of an incompressible viscoelastic fluid of constant density, which fills a bounded domain $\Omega\subset\mathbb{R}^N$, $N=2,3$, with locally Lipschitz boundary $\partial\Omega$ and satisfies the rheological relation
$$
\begin{equation}
\biggl(1+\sum_{k=1}^{m}p_{k}D_t^{a_k}\biggr)\sigma= \nu\biggl(1+\nu^{-1}\sum_{k=1}^{n}q_{k}D_t^{b_k}\biggr) \mathcal{E}(v), \qquad \nu>0,
\end{equation}
\tag{1}
$$
which connects the stress tensor deviator $\sigma(t,x)$ with the deformation velocity tensor $\mathcal{E}(v)(t,x)$ of the velocity field $v(t,x)$. Here $m,n \in \mathbb{N}$, $\nu>0$, $a_k\in [k,k+ 1)$ for $k=1,\dots,m$, $b_k\in [k,k+1)$ for $k=1,\dots,n$, and $D_t^{r}$ is the fractional Riemann–Liouville derivative of order $r$. We have a Maxwell fluid for $m<n$, an Oldroyd fluid for $m=n$, and a Kelvin–Voigt fluid for $m>n$ (see [1]). We use high-order models because they have higher accuracy in describing the motion of real media.
For integer ($a_k,b_j \in \mathbb{Z}$) fluid models (1) of high order the solvability and the properties of solutions of the corresponding initial boundary-value problems in classes of sufficiently smooth functions were established in [1]–[3].
We are interested in the fractional Oldroyd fluid model ($m=n$, $a_m=b_m$, $a_m,b_m\in (m,m+1)$, $p_m,q_m>0$) of high order. In this case it follows from (1) that
$$
\begin{equation}
\sigma(t,x)=\mu_0\mathcal{E}(v)(t,x)+\int_0^tG(t-s)\mathcal{E}(v)(s,x)\,ds
\end{equation}
\tag{2}
$$
up to the initial data for $\sigma$ and $\mathcal{E}(v)$, where $\mu_0=p_{m}^{-1}q_m$, $G(s)=s^{\gamma_1-1}G_0(s)$, $\gamma_1=a_m-b_{m-1}<1$, and $G_0(s)$ is a smooth function.
The presence of the integral term in (2) implies long-term memory with respect to the spatial variables. Models taking account of the state of the medium along integral curves of the velocity field $v$ are of great interest as more realistic ones from various points of view (see, for example, [4]). Models of this type of order at most 2 (integer and fractional ones) were studied in [5]–[10].
Substituting the expression for $\sigma(t,x)$ into the equation of motion in the Cauchy form $\partial v/\partial t+\sum_{i=1}^Nv_i\, \partial v/\partial x_i+ \nabla p-\operatorname{Div}\sigma=f$ with allowance for memory along fluid motion trajectories leads to the initial boundary-value problem
$$
\begin{equation}
\frac{\partial v}{\partial t}+ \sum_{i=1}^nv_i\, \frac{\partial v}{\partial x_i}- \mu_0\Delta v-\operatorname{Div}\int_{0}^tG(t-s) \mathcal{E}(v)(s,z(\tau;t,x))\,ds+\nabla p=f,
\end{equation}
\tag{3}
$$
$$
\begin{equation}
z(\tau;t,x)=x+\int_t^\tau v(s,z(s;t,x))\,ds, \qquad 0\leqslant t,\tau\leqslant T, \quad x\in\overline{\Omega},
\end{equation}
\tag{4}
$$
$$
\begin{equation}
\operatorname{div}v(t,x)=0, \qquad (t,x)\in Q_T=[0,T]\times \Omega,
\end{equation}
\tag{5}
$$
$$
\begin{equation}
v(0,x)=v^0(x),\quad x\in \Omega, \qquad v(t,x)=0, \quad (t,x)\in [0,T]\times \partial\Omega
\end{equation}
\tag{6}
$$
(for an $N\times N$ matrix function $A$ with rows $a_i$, $\operatorname{Div}A:=\operatorname{div}a_1,\dots,\operatorname{div}a_N)$).
Below we study the weak solvability of problem (3)–(6) in the space $W_1\equiv \{v\colon v\in L_2(0,T;V)\cap L_{\infty}(0,T;H)$, $v'\in L_1(0,T;V^{-1})\}$. Here $H$ and $V$ are the closures of the set of solenoidal functions $C^\infty_0(\Omega)^N$ with respect to the norms in $L_2(\Omega)^N$ and $W_2^1(\Omega)^N$, respectively (see [11]). In the case when $v\in W_1$, the existence of a classical solution of the Cauchy problem (4) is not guaranteed and its solvability is established in the class of regular Lagrangian flows, which generalize the notion of a classical solution of a system of ODEs. Recall that a regular Lagrangian flow generated by a function $v$ such that $\operatorname{div}v=0$ is a function $z(\tau;t,x)$, $(\tau,t,x)\in [0,T]\times [0,T] \times\overline{\Omega}$, satisfying the following conditions: 1) for almost all $x$ and all $t\in [0,T]$ the function $\gamma(\tau)=z(\tau;t,x)$ is absolutely continuous and satisfies (4) and the condition $z(t;t,x)=x$; 2) $m(z(\tau;t,B))=m(B)$ for all $t,\tau \in[0,T]$; 3) $z(t_3;t_1,x)=z(t_3;t_2,z(t_2;t_1,x))$ for all $t_1,t_2,t_3\in[0, T]$ and almost all $x\in \overline{\Omega}$. Here $B\subset\overline{\Omega}$ is an arbitrary Lebesgue-measurable set and $m$ is the Lebesgue measure. If $v\in L_1(0,T;W_{p}^1(\Omega)^N)$, $1\leqslant p\leqslant \infty$, $\operatorname{div}v(t,x)=0$, and $v(t,x)\big|_{\partial\Omega}=0$, then there exists a unique regular Lagrangian flow $z$ generated by $v$. See, for example, [12] and [13] for facts about regular Lagrangian flows.
Definition. A weak solution of the problem (3)–(6) is a function $v\in W_1$ satisfying the identity
$$
\begin{equation*}
\begin{aligned} \, &\frac{d(v,\varphi)}{dt}- \sum_{i=1}^N\biggl(v_iv,\frac{\partial\varphi}{\partial x_i}\biggr)+ \mu_0(\mathcal{E}(v),\mathcal{E}(\varphi)) \\ &\qquad+\biggl(\,\int_{0}^tG(t-s)\mathcal{E}(v)(s,z(s;t,x))\,ds, \mathcal{E}(\varphi)\biggr)=\langle f,\varphi\rangle \end{aligned}
\end{equation*}
\notag
$$
for all $\varphi\in V$ and almost all $t\in[0,T]$ and the initial condition in (6) (here $z(s;t,x)$ is a regular Lagrangian flow generated by $v$).
Theorem. If $f\in L_2(0,T;V^{-1})$ and $v^0\in H$, then problem (3)–(6) has a weak solution.
|
|
|
Bibliography
|
|
|
1. |
A. P. Oskolkov, Boundary-value problems of mathematical physics and related problems of function theory. 9, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 59, Nauka, Leningrad branch, Leningrad, 1976, 133–177 ; English transl. in J. Soviet Math., 10:2 (1978), 299–335 |
2. |
N. A. Karazeeva, A. A. Cotsiolis, and A. P. Oskolkov, Boundary-value problem of mathematical physics. 14, Tr. Mat. Inst. Steklova, 188, Nauka, Leningrad branch, Leningrad, 1990, 59–87 ; English transl. in Proc. Steklov Inst. Math., 188 (1991), 73–108 |
3. |
V. G. Zvyagin and M. V. Turbin, Mathematical questions in hydrodynamics of viscoelastic media, Krasand, Moscow, 2012, 416 pp. (Russian) |
4. |
V. G. Litvinov, Operator equations describing the flow of a non-linear viscoelastic fluid, Preprint no. 88.46, Institute of Mathematics of the Academy of Sciences of UkrSSR, Kiev, 1988, 58 pp. (Russian) |
5. |
V. G. Zvyagin and V. P. Orlov, Sibirsk. Mat. Zh., 59:6 (2018), 1351–1369 ; English transl. in Siberian Math. J., 59:6 (2018), 1073–1089 |
6. |
V. G. Zvyagin and V. P. Orlov, J. Math. Fluid Mech., 23:1 (2021), 9, 24 pp. |
7. |
V. G. Zvyagin and V. P. Orlov, Nonlinear Anal., 172 (2018), 73–98 |
8. |
V. Zvyagin and V. Orlov, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 |
9. |
V. Zvyagin and V. Orlov, Discrete Contin. Dyn. Syst. Ser. B, 23:9 (2018), 3855–3877 |
10. |
A. V. Zvyagin, Uspekhi Mat. Nauk, 74:3(447) (2019), 189–190 ; English transl. in Russian Math. Surveys, 74:3 (2019), 549–551 |
11. |
R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. |
12. |
L. Ambrosio, Invent. Math., 158:2 (2004), 227–260 |
13. |
G. Crippa and C. de Lellis, J. Reine Angew. Math., 2008:616 (2008), 15–46 |
Citation:
V. G. Zvyagin, V. P. Orlov, “Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation”, Russian Math. Surveys, 77:4 (2022), 753–755
Linking options:
https://www.mathnet.ru/eng/rm10066https://doi.org/10.4213/rm10066e https://www.mathnet.ru/eng/rm/v77/i4/p197
|
Statistics & downloads: |
Abstract page: | 298 | Russian version PDF: | 35 | English version PDF: | 58 | Russian version HTML: | 127 | English version HTML: | 84 | References: | 55 | First page: | 20 |
|