Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 4, Pages 753–755
DOI: https://doi.org/10.4213/rm10066e
(Mi rm10066)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief Communications

Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation

V. G. Zvyagin, V. P. Orlov

Voronezh State University
References:
Funding agency Grant number
Russian Science Foundation 22-11-00103
This study was supported by the Russian Science Foundation (grant no. 22-11-00103).
Received: 15.07.2022
Bibliographic databases:
Document Type: Article
MSC: 76A10
Language: English
Original paper language: Russian

We consider the motion on the interval of time $[0,T]$ of an incompressible viscoelastic fluid of constant density, which fills a bounded domain $\Omega\subset\mathbb{R}^N$, $N=2,3$, with locally Lipschitz boundary $\partial\Omega$ and satisfies the rheological relation

$$ \begin{equation} \biggl(1+\sum_{k=1}^{m}p_{k}D_t^{a_k}\biggr)\sigma= \nu\biggl(1+\nu^{-1}\sum_{k=1}^{n}q_{k}D_t^{b_k}\biggr) \mathcal{E}(v), \qquad \nu>0, \end{equation} \tag{1} $$
which connects the stress tensor deviator $\sigma(t,x)$ with the deformation velocity tensor $\mathcal{E}(v)(t,x)$ of the velocity field $v(t,x)$. Here $m,n \in \mathbb{N}$, $\nu>0$, $a_k\in [k,k+ 1)$ for $k=1,\dots,m$, $b_k\in [k,k+1)$ for $k=1,\dots,n$, and $D_t^{r}$ is the fractional Riemann–Liouville derivative of order $r$. We have a Maxwell fluid for $m<n$, an Oldroyd fluid for $m=n$, and a Kelvin–Voigt fluid for $m>n$ (see [1]). We use high-order models because they have higher accuracy in describing the motion of real media.

For integer ($a_k,b_j \in \mathbb{Z}$) fluid models (1) of high order the solvability and the properties of solutions of the corresponding initial boundary-value problems in classes of sufficiently smooth functions were established in [1]–[3].

We are interested in the fractional Oldroyd fluid model ($m=n$, $a_m=b_m$, $a_m,b_m\in (m,m+1)$, $p_m,q_m>0$) of high order. In this case it follows from (1) that

$$ \begin{equation} \sigma(t,x)=\mu_0\mathcal{E}(v)(t,x)+\int_0^tG(t-s)\mathcal{E}(v)(s,x)\,ds \end{equation} \tag{2} $$
up to the initial data for $\sigma$ and $\mathcal{E}(v)$, where $\mu_0=p_{m}^{-1}q_m$, $G(s)=s^{\gamma_1-1}G_0(s)$, $\gamma_1=a_m-b_{m-1}<1$, and $G_0(s)$ is a smooth function.

The presence of the integral term in (2) implies long-term memory with respect to the spatial variables. Models taking account of the state of the medium along integral curves of the velocity field $v$ are of great interest as more realistic ones from various points of view (see, for example, [4]). Models of this type of order at most 2 (integer and fractional ones) were studied in [5]–[10].

Substituting the expression for $\sigma(t,x)$ into the equation of motion in the Cauchy form $\partial v/\partial t+\sum_{i=1}^Nv_i\, \partial v/\partial x_i+ \nabla p-\operatorname{Div}\sigma=f$ with allowance for memory along fluid motion trajectories leads to the initial boundary-value problem

$$ \begin{equation} \frac{\partial v}{\partial t}+ \sum_{i=1}^nv_i\, \frac{\partial v}{\partial x_i}- \mu_0\Delta v-\operatorname{Div}\int_{0}^tG(t-s) \mathcal{E}(v)(s,z(\tau;t,x))\,ds+\nabla p=f, \end{equation} \tag{3} $$
$$ \begin{equation} z(\tau;t,x)=x+\int_t^\tau v(s,z(s;t,x))\,ds, \qquad 0\leqslant t,\tau\leqslant T, \quad x\in\overline{\Omega}, \end{equation} \tag{4} $$
$$ \begin{equation} \operatorname{div}v(t,x)=0, \qquad (t,x)\in Q_T=[0,T]\times \Omega, \end{equation} \tag{5} $$
$$ \begin{equation} v(0,x)=v^0(x),\quad x\in \Omega, \qquad v(t,x)=0, \quad (t,x)\in [0,T]\times \partial\Omega \end{equation} \tag{6} $$
(for an $N\times N$ matrix function $A$ with rows $a_i$, $\operatorname{Div}A:=\operatorname{div}a_1,\dots,\operatorname{div}a_N)$).

Below we study the weak solvability of problem (3)(6) in the space $W_1\equiv \{v\colon v\in L_2(0,T;V)\cap L_{\infty}(0,T;H)$, $v'\in L_1(0,T;V^{-1})\}$. Here $H$ and $V$ are the closures of the set of solenoidal functions $C^\infty_0(\Omega)^N$ with respect to the norms in $L_2(\Omega)^N$ and $W_2^1(\Omega)^N$, respectively (see [11]). In the case when $v\in W_1$, the existence of a classical solution of the Cauchy problem (4) is not guaranteed and its solvability is established in the class of regular Lagrangian flows, which generalize the notion of a classical solution of a system of ODEs. Recall that a regular Lagrangian flow generated by a function $v$ such that $\operatorname{div}v=0$ is a function $z(\tau;t,x)$, $(\tau,t,x)\in [0,T]\times [0,T] \times\overline{\Omega}$, satisfying the following conditions: 1) for almost all $x$ and all $t\in [0,T]$ the function $\gamma(\tau)=z(\tau;t,x)$ is absolutely continuous and satisfies (4) and the condition $z(t;t,x)=x$; 2) $m(z(\tau;t,B))=m(B)$ for all $t,\tau \in[0,T]$; 3) $z(t_3;t_1,x)=z(t_3;t_2,z(t_2;t_1,x))$ for all $t_1,t_2,t_3\in[0, T]$ and almost all $x\in \overline{\Omega}$. Here $B\subset\overline{\Omega}$ is an arbitrary Lebesgue-measurable set and $m$ is the Lebesgue measure. If $v\in L_1(0,T;W_{p}^1(\Omega)^N)$, $1\leqslant p\leqslant \infty$, $\operatorname{div}v(t,x)=0$, and $v(t,x)\big|_{\partial\Omega}=0$, then there exists a unique regular Lagrangian flow $z$ generated by $v$. See, for example, [12] and [13] for facts about regular Lagrangian flows.

Definition. A weak solution of the problem (3)(6) is a function $v\in W_1$ satisfying the identity

$$ \begin{equation*} \begin{aligned} \, &\frac{d(v,\varphi)}{dt}- \sum_{i=1}^N\biggl(v_iv,\frac{\partial\varphi}{\partial x_i}\biggr)+ \mu_0(\mathcal{E}(v),\mathcal{E}(\varphi)) \\ &\qquad+\biggl(\,\int_{0}^tG(t-s)\mathcal{E}(v)(s,z(s;t,x))\,ds, \mathcal{E}(\varphi)\biggr)=\langle f,\varphi\rangle \end{aligned} \end{equation*} \notag $$
for all $\varphi\in V$ and almost all $t\in[0,T]$ and the initial condition in (6) (here $z(s;t,x)$ is a regular Lagrangian flow generated by $v$).

Theorem. If $f\in L_2(0,T;V^{-1})$ and $v^0\in H$, then problem (3)(6) has a weak solution.


Bibliography

1. A. P. Oskolkov, Boundary-value problems of mathematical physics and related problems of function theory. 9, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 59, Nauka, Leningrad branch, Leningrad, 1976, 133–177  mathnet  mathscinet  zmath; English transl. in J. Soviet Math., 10:2 (1978), 299–335  crossref
2. N. A. Karazeeva, A. A. Cotsiolis, and A. P. Oskolkov, Boundary-value problem of mathematical physics. 14, Tr. Mat. Inst. Steklova, 188, Nauka, Leningrad branch, Leningrad, 1990, 59–87  mathnet  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 188 (1991), 73–108
3. V. G. Zvyagin and M. V. Turbin, Mathematical questions in hydrodynamics of viscoelastic media, Krasand, Moscow, 2012, 416 pp. (Russian)
4. V. G. Litvinov, Operator equations describing the flow of a non-linear viscoelastic fluid, Preprint no. 88.46, Institute of Mathematics of the Academy of Sciences of UkrSSR, Kiev, 1988, 58 pp. (Russian)  mathscinet
5. V. G. Zvyagin and V. P. Orlov, Sibirsk. Mat. Zh., 59:6 (2018), 1351–1369  mathnet  crossref  mathscinet  zmath; English transl. in Siberian Math. J., 59:6 (2018), 1073–1089  crossref
6. V. G. Zvyagin and V. P. Orlov, J. Math. Fluid Mech., 23:1 (2021), 9, 24 pp.  crossref  mathscinet  zmath
7. V. G. Zvyagin and V. P. Orlov, Nonlinear Anal., 172 (2018), 73–98  crossref  mathscinet  zmath
8. V. Zvyagin and V. Orlov, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350  crossref  mathscinet
9. V. Zvyagin and V. Orlov, Discrete Contin. Dyn. Syst. Ser. B, 23:9 (2018), 3855–3877  crossref  mathscinet  zmath
10. A. V. Zvyagin, Uspekhi Mat. Nauk, 74:3(447) (2019), 189–190  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 74:3 (2019), 549–551  crossref  adsnasa
11. R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp.  mathscinet  zmath
12. L. Ambrosio, Invent. Math., 158:2 (2004), 227–260  crossref  mathscinet  zmath  adsnasa
13. G. Crippa and C. de Lellis, J. Reine Angew. Math., 2008:616 (2008), 15–46  crossref  mathscinet  zmath

Citation: V. G. Zvyagin, V. P. Orlov, “Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation”, Russian Math. Surveys, 77:4 (2022), 753–755
Citation in format AMSBIB
\Bibitem{ZvyOrl22}
\by V.~G.~Zvyagin, V.~P.~Orlov
\paper Weak solvability of motion models for a~viscoelastic fluid with a~higher-order rheological relation
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 4
\pages 753--755
\mathnet{http://mi.mathnet.ru//eng/rm10066}
\crossref{https://doi.org/10.4213/rm10066e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461387}
\zmath{https://zbmath.org/?q=an:1522.76007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..753Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992300700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165393399}
Linking options:
  • https://www.mathnet.ru/eng/rm10066
  • https://doi.org/10.4213/rm10066e
  • https://www.mathnet.ru/eng/rm/v77/i4/p197
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:298
    Russian version PDF:35
    English version PDF:58
    Russian version HTML:127
    English version HTML:84
    References:55
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024