Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 4, Pages 766–768
DOI: https://doi.org/10.4213/rm10061e
(Mi rm10061)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief Communications

Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers

A. S. Holevo

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Funding agency Grant number
Russian Science Foundation 19-11-00086
This work was supported by grant no. 19-11-00086 of the Russian Science Foundation. https://rscf.ru/project/19-11-00086/.
Received: 01.06.2022
Bibliographic databases:
Document Type: Article
MSC: 81P45, 94A40
Language: English
Original paper language: Russian

A long-standing problem in quantum Shannon theory is the classical capacity of bosonic Gaussian channels of various kinds [6]. The Hypothesis of Gaussian Maximizers (HGM) states that the full capacity of such channels is attained at Gaussian encodings. A breakthrough was made in the papers [1] and [2], where HGM was proved for the important class of multimode gauge co- or contra-variant Gaussian channels [4]. In [8] and [5] the solution was extended to a much broader class of channels satisfying a certain ‘threshold condition’. At the same time the HGM remains open for a large variety of Gaussian channels lying beyond the scope of the threshold condition [7]. In this note we sketch a novel approach to such problems, based on principles of convex programming, and illustrate it using the characteristic case of an approximate position measurement with energy constraint, underlying noisy Gaussian homodyning in quantum optics. Rather remarkably, for this particular model the method reduces the solution of the optimization problem to a generalization of the celebrated log-Sobolev inequality.

Let $\mathfrak{S}$ be the convex set of all density operators in a separable Hilbert space $\mathcal{H}$ of the quantum system and $\mathcal{X}$ and $ \mathcal{Y}$ be standard measurable spaces. Consider a measurement channel $ M\colon \rho \to p_{\rho }(y)=\operatorname{Tr}\rho m(y),$ where $\rho \in \mathfrak{ S}$ and $m(y)$ is a uniformly bounded positive operator-valued function of $ y\in \mathcal{Y}$ such that $\displaystyle\int m(y)\,\mu (dy)=I$ ($I$ is the identity operator on $\mathcal{H}$ and $\mu$ is a measure). The encoding $\mathcal{E}=\{ \pi (dx),\rho (x)\} $ is a probability measure $\pi (dx)$ with a measurable family of states $\rho (x)$, $x\in \mathcal{X}$. The average state $\bar{\rho}_{\mathcal{E}}=\displaystyle\int\rho(x)\,\pi(dx)$. Let $H$ be a Hamiltonian on $\mathcal{H}$ and $E$ be a positive number. Then the energy-constrained classical capacity of the measurement channel $M$ is

$$ \begin{equation} C(M,H,E)=\sup_{\mathcal{E}:\operatorname{Tr}\! \bar{\rho}_{\mathcal{E}}H\leqslant E}I(\mathcal{E},M), \end{equation} \tag{1} $$
where $I(\mathcal{E},M)$ is the mutual information between $\mathcal{E}$ and $M$. Introducing the well-defined output differential entropy $h_{M}(\rho)= -\displaystyle\int p_{\rho}(y)\ln p_{\rho}(y)\,\mu(dy)$, one has
$$ \begin{equation} I(\mathcal{E},M)=h_{M}(\bar{\rho}_{\mathcal{E}})- \int h_{M}(\rho(x))\,\pi(dx). \end{equation} \tag{2} $$
Therefore,
$$ \begin{equation} C(\mathcal{M},H,E)=\sup_{\rho:\operatorname{Tr}\!\rho H\leqslant E} [h_{\mathcal{M}}(\rho)-e_{\mathcal{M}}(\rho)], \end{equation} \tag{3} $$
where an analogue of the convex closure of the output differential entropy for a quantum channel [10] is introduced:
$$ \begin{equation} e_{M}(\rho)=\inf_{\mathcal{E}:\bar{\rho}_{\mathcal{E}}=\rho} \int h_{M}(\rho(x))\,\pi(dx). \end{equation} \tag{4} $$

The minimization problem (4) is formally analogous to the quantum Bayes problem studied in [3]. Introducing $K(\rho)=-\displaystyle\int m(y)\ln p_{\rho}(y)\,\mu(dy)$, the optimality condition for an ensemble $\mathcal{E}=\{\pi_{0}(dx),\rho_{0}(x)\}$ becomes: There exists a selfadjoint operator $\Lambda_{0}$ such that (i) $\Lambda_{0}\leqslant K(\rho)$ for $\rho \in \mathfrak{S}$; (ii) $[K(\rho_{0}(x))-\Lambda_{0}]\rho_{0}(x)=0\pmod{\pi_{0}}$.

Integrating (ii), an equation for determining $\Lambda_{0}$ is obtained:

$$ \begin{equation} \int_{\mathfrak{S}}K(\rho_{0}(x))\rho_{0}(x)\,\pi_{0}(dx)= \Lambda_{0}\bar{\rho}. \end{equation} \tag{5} $$

Passing to bosonic Gaussian systems we denote by $\rho_{\alpha}$ the centred Gaussian state of the canonical commutation relations with covariance matrix $\alpha$ [6], by $\mathfrak{S}(\alpha)$ the set of all states $\rho$ with fixed matrix $\alpha$ of second moments, and set $C(M;\alpha)\equiv \sup_{\mathcal{E}:\bar{\rho}_{\mathcal{E}}\in \mathfrak{S}(\alpha)}I(\mathcal{E},M)$. The following theorem was proved in [7].

Let $M$ be a general Gaussian measurement channel. Then the optimizing density operator $\rho$ in (3) is a (centred) Gaussian operator $\rho_{\alpha}$:

$$ \begin{equation} C(M;\alpha)=h_{M}(\rho_{\alpha})-e_{M}(\rho_{\alpha}). \end{equation} \tag{6} $$
Hence for a quadratic bosonic Hamiltonian $H=R\epsilon R^{t}$
$$ \begin{equation} C(M,H,E)=\max_{\alpha:\operatorname{Tr}\!\alpha\epsilon \leqslant E} C(M;\alpha)=\max_{\alpha:\operatorname{Tr}\!\alpha \epsilon \leqslant E} [h_{M}(\rho_{\alpha})-e_{M}(\rho_{\alpha})]. \end{equation} \tag{7} $$

The approximate measurement of the position $q$ in one mode $R=(q,p)$ corresponds to $m(y)=g_{\beta}(q-y)$, where $g_{\beta}(y)$ is the probability density of the normal distribution $\mathcal{N}(0,\beta)$. We take the Hamiltonian $H=(q^{2}+p^{2})/2$ and the covariance matrix $\alpha=\operatorname{diag}[\alpha_{q},\alpha_{p}]$.

Theorem. The maximum in (1) is attained at the Gaussian encoding $\{\pi_{0}(dx), \rho_{0}(x)\}$, where $\rho_{0}(x)=|x\rangle_{\delta}\langle x|$ are the squeezed states ($|x\rangle_{\delta}=\mathrm{e}^{-ipx}|0\rangle_{\delta}$) such that $\delta=(4\alpha_{p})^{-1}$,

$$ \begin{equation*} _{\delta}\langle 0|q^{2}|0\rangle_{\delta}=\delta,\quad \operatorname{Re} {}_{\delta}\langle 0| qp|0\rangle_{\delta}=0,\quad {}_{\delta}\langle 0|p^{2}|0\rangle_{\delta}=(4\delta)^{-1}. \end{equation*} \notag $$
The distribution $\pi_{0}(dx)$ is centred Gaussian with variance $\gamma =\alpha_{q}-(4\alpha_{p})^{-1}$.

Sketch of proof. The computation of (5) results in
$$ \begin{equation} \Lambda_{0}=\biggl[\ln\sqrt{2\pi(\beta+\delta)}+ \frac{\beta+2\delta}{2(\beta+\delta)}\biggr] I-\frac{2\delta^{2}}{\beta+\delta}\,p^{2}. \end{equation} \tag{8} $$
This is a selfadjoint operator satisfying condition (ii).

Checking condition (i) requires a generalization of the logarithmic Sobolev inequality (see, for instance, [9]). Let $f(x)=|\psi(x)|^{2}$ be a smooth probability density on $\mathbb{R}$. Then the inequality we have to prove is

$$ \begin{equation} \int[g_{\beta}\ast f(y)]\ln[g_{\beta}\ast f(y)]\,dy+ \ln\sqrt{2\pi \mathrm{e}(\beta+\delta)}+\frac{\delta}{2(\beta+\delta)} \leqslant \frac{2\delta^{2}}{\beta+\delta}\int|\psi'(x)|^{2}\,dx \end{equation} \tag{9} $$
for $\beta,\delta \geqslant 0$. For $\beta=0$ this is equivalent to the version of the log-Sobolev inequality in [9]. To prove (9) we multiply the difference between the left- and right-hand sides by $\beta+\delta$ and compute the derivative with respect to $\beta$. Its non-positivity is equivalent to the inequality in [9] with properly selected parameters. Thus (9) holds for all $\beta,\delta \geqslant 0$, which yields (i). $\Box$


Bibliography

1. V. Giovannetti, A. S. Holevo, and R. García-Patrón, Comm. Math. Phys., 334:3 (2015), 1553–1571  mathnet  crossref  mathscinet  zmath  adsnasa
2. V. Giovannetti, A. S. Holevo, and A. Mari, Teoret. Mat. Fiz., 182:2 (2015), 338–349  mathnet  crossref  mathscinet  zmath; English transl. in Theoret. and Math. Phys., 182:2 (2015), 284–293  crossref  adsnasa
3. A. S. Holevo, Tr. Mat. Inst. Steklov., 124, Nauka, Moscow, 1976, 3–140  mathnet  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 124:3 (1978), 1–140  mathscinet
4. A. S. Holevo, Uspekhi Mat. Nauk, 70:2(422) (2015), 141–180  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 70:2 (2015), 331–367  crossref  adsnasa
5. A. S. Holevo, J. Math. Phys., 57:1 (2016), 15203, 11 pp.  crossref  mathscinet  zmath  adsnasa
6. A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, Texts Monogr. Theor. Phys., 2nd ed., De Gruyter, Berlin, 2019, xv+350 pp.  crossref  zmath
7. A. Holevo, Entropy, 23:3 (2021), 377, 14 pp.  crossref  mathscinet  adsnasa
8. A. S. Holevo and A. A. Kuznetsova, J. Phys. A, 53:17 (2020), 175304, 13 pp.  crossref  mathscinet  adsnasa
9. E. H. Lieb and M. P. Loss, Analysis, Grad. Stud. Math., 14, 2nd ed., Amer. Math. Soc., Providence, RI, 2001, 225–226 (№ 8.14)  crossref  mathscinet  zmath
10. M. E. Shirokov, Teor. Veroyatn. Primen., 52:2 (2007), 301–335  mathnet  crossref  mathscinet  zmath; English transl. in Theory Probab. Appl., 52:2 (2008), 250–276  crossref

Citation: A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768
Citation in format AMSBIB
\Bibitem{Hol22}
\by A.~S.~Holevo
\paper Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 4
\pages 766--768
\mathnet{http://mi.mathnet.ru//eng/rm10061}
\crossref{https://doi.org/10.4213/rm10061e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461391}
\zmath{https://zbmath.org/?q=an:1531.81046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..766H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992300700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165892307}
Linking options:
  • https://www.mathnet.ru/eng/rm10061
  • https://doi.org/10.4213/rm10061e
  • https://www.mathnet.ru/eng/rm/v77/i4/p205
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:365
    Russian version PDF:36
    English version PDF:102
    Russian version HTML:151
    English version HTML:84
    References:82
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024