Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 4, Pages 759–761
DOI: https://doi.org/10.4213/rm10047e
(Mi rm10047)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief Communications

Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$

V. Z. Grines, E. Ya. Gurevich

National Research University "Higher School of Economics" (Nizhny Novgorod branch)
References:
Abstract: In this paper, we announce a result on the possibility of obtaining sufficient conditions for topological conjugacy of gradient-like flows without heteroclinic intersections, given on a connected sum of products $S^{n-1}\times S^1$ in combinatorial terms.
Funding agency Grant number
Russian Science Foundation 21-11-00010
This work was supported by the Russian Science Foundation (grant no. 21-11-00010).
Received: 23.12.2021
Russian version:
Uspekhi Matematicheskikh Nauk, 2022, Volume 77, Issue 4(466), Pages 201–202
DOI: https://doi.org/10.4213/rm10047
Bibliographic databases:
Document Type: Article
MSC: 37C15
Language: English
Original paper language: Russian

Let $f^t$ be a smooth flow on a closed manifold $M^n$, let the non-wandering set $\operatorname{NW}(f^t)$ of $f^t$ consist of a finite number of hyperbolic equilibrium states whose unstable manifolds have dimension (Morse index) in the range $\{0,1,n-1,n\}$, and assume that the invariant manifolds of different saddle equilibria do not intersect each other. We say that such a flow $f^t$ has no heteroclinic trajectories. According to [4], $M^n$ is homeomorphic to the manifold $\mathcal{S}^n_g$, where $\mathcal{S}^n_g$ is either the sphere $\mathbb{S}^n=\{x\in \mathbb{R}^n\colon |x|=1\}$ (for $g=0$) or the connected sum of $g>0$ copies of $\mathbb{S}^{n-1}\times \mathbb{S}^{1}$. Throughout, by an $n$-dimensional sphere $S^n$ we mean a manifold homeomorphic to $\mathbb{S}^n$.

Denote by $G(\mathcal{S}^n_g)$ the class of smooth flows without heteroclinic trajectories on $\mathcal{S}^n_g$ whose non-wandering set consists of hyperbolic equilibrium states. For such flows the following statement holds.

Statement 1. Let $f^t\in G(\mathcal S^n_g)$, where $g\geqslant 0$ and $n\geqslant4$. Then the Morse index of any saddle equilibrium of the flow $f^t$ equals either $1$ or $n-1$.

For $g=0$ Statement 1 was proved in [8]. Suppose that $g>0$ and a flow $f^t\in G(\mathcal{S}^n_g)$ has a saddle equilibrium $\sigma$ whose Morse index $i$ belongs to the set $\{2,\dots,n-2\}$. Then by [10], Theorem 2.1, there exists a unique pair $\alpha$, $\omega$ of a source and a sink equilibrium such that $\operatorname{clos}W^{\rm s}_{\sigma}=W^{\rm s}_{\sigma}\cup \alpha$ and $\operatorname{clos}W^{\rm u}_{\sigma}=W^{\rm u}_{\sigma}\cup \omega$. Hence the closures of the stable and unstable invariant manifolds of $\sigma$ are spheres of dimension $n-i$ and $i$, respectively, which are smoothly embedded at all points except possibly at $\alpha$ and $\omega$. These spheres have the unique common point $\sigma$, and therefore their intersection number equals one in absolute value. It was shown in [3] that the homology groups $H_{i}(\mathcal{S}^n_g)$ and $H_{n-i}(\mathcal{S}^n_g)$ are trivial. This implies that there is a sphere $S^{i}$ that is homologous to the sphere $\operatorname{clos}{W^{\rm u}_{\sigma}}$ and disjoint from the sphere $\operatorname{clos}{W^{\rm s}_{\sigma}}$. Then the intersection number of $S^{i}$ and $\operatorname{clos}W^{\rm s}_{\sigma}$ is zero. It follows from [9], § 70, Theorem I, that the intersection numbers of the spheres $S^{i}$ and $\operatorname{clos}W^{\rm s}_{\sigma}$ and of $\operatorname{clos}W^{\rm u}_{\sigma}$ and $\operatorname{clos}W^{\rm s}_{\sigma}$ must be equal, so we obtain a contradiction.

It follows from [2], [7], and [6] that all flows in the class $G(\mathcal{S}^n_g)$ are structurally stable. A problem of the topological classification of structurally stable flows with finite non-wandering set on manifolds has a long and rich history, beginning in the classical works [2] and [1]. However, the most complete results have been obtained for dimension $n\leqslant 3$, while for $n>3$ there are only few results (see the survey [5]). A topological classification of flows in the class $G(S^n)$, $n\geqslant 3$, was obtained in [8], where it was proved that one complete topological invariant of such flows is the phase diagram, a combinatorial invariant which generalizes the Leontovich–Mayer diagram of a dynamical system and the Peixoto graph used for the topological classification of structurally stable flows on two-dimensional manifolds. For $n=3$ the topological classification of flows in the class $G(\mathcal{S}^n_g)$ in combinatorial terms follows from more general results of [11]. In [12] an example of a Morse–Smale flow on a 4-manifold was constructed in which the closures of two-dimensional invariant manifolds of saddle equilibria are wild spheres. This example shows the fundamental impossibility of classifying multidimensional flows in combinatorial terms. Statement 1 allows one to extend significantly the class of manifolds whose partition into the trajectories of the flow still admits a combinatorial description.

Let $\mathcal{L}_{f^t}$ be the set of closures of the $(n-1)$-dimensional invariant manifolds of saddle equilibrium states. By virtue of Statement 1, each element of this set is a sphere of dimension $n-1$. Let $\mathcal{D}_{f^t}$ be the set of connected components of the manifold obtained from $M^n$ by removing all spheres belonging to $\mathcal{L}_{f^t}$.

The bi-colour graph of the flow $f^t$ is the graph $\Gamma_{f^t}$ with the following properties: 1) the vertex set $V(\Gamma_{f^t})$ of $\Gamma_{f^t}$ is in a one-to-one correspondence with the set $\mathcal{D}_{f^t}$, and the edge set $E(\Gamma_{f^t})$ of $\Gamma_{f^t}$ is in a one-to-one correspondence with the set $\mathcal{L}_{f^t}$; 2) two vertices $v_i$ and $v_j$ are incident to an edge $e_{i,j}$ if and only if the corresponding domains $D_i,D_j\in \mathcal{D}_{f^t}$ have a common boundary component; 3) an edge $e_{i,j}$ has colour $\mathrm{s}$ (colour $\mathrm{u}$) if it corresponds to a manifold $\operatorname{clos}W^{\rm s}_p\in \mathcal{L}_{f^t}$ (to $\operatorname{clos}W^{\rm u}_q \in \mathcal{L}_{f^t}$, respectively).

Theorem 1. Two flows $f^t,f'^t\in G(\mathcal{S}^n_g)$ are topologically equivalent if and only if their graphs $\Gamma_{f^t}$ and $\Gamma_{f'^t}$ are isomorphic by means of a colour-preserving isomorphism.

The idea of the proof of Theorem 1 is as follows. Let $\Omega^i_{f^t}$ denote the set of all equilibrium states of the flow $f^t\in G(\mathcal{S}^n_g)$ whose unstable manifolds have dimension $i\in \{0,1,n-1,n\}$. Set

$$ \begin{equation*} A_{f^t}=\Omega^0_{f^t}\cup W^{\rm u}_{\Omega^1_{f^t}},\quad R_{f^t}=\Omega^n_{f^t}\cup W^{\rm s}_{\Omega^{n-1}_{f^t}},\quad\text{and}\quad V_{f^t}=\mathcal{S}^n_g\setminus (A_{f^t}\cup R_{f^t}). \end{equation*} \notag $$
We show that the restriction of $f^t$ to $V_{f^t}$ has a global section $\Sigma_{f^t}$, and the existence of an isomorphism between the graphs $\Gamma_{f^t}$ and $\Gamma_{{f'}^t}$ leads to the existence of a homeomorphism $h\colon \Sigma_{f^t}\to \Sigma_{{f'}^t}$ sending the intersection of $\Sigma_{f^t}$ with the invariant manifolds of saddle equilibria of $f^t$ to the intersection of $\Sigma_{{f'}^t}$ with the invariant manifolds of saddle equilibria of the flow ${f'}^t$. Then we extend $h$ to the sets $V_{f^t}$, $A_{f^t}$, and $R_{f^t}$, to a homeomorphism mapping all the trajectories of $f^t$ to trajectories of ${f'}^t$.


Bibliography

1. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maĭer (Mayer), Qualitative theory of second-order dynamic systems, Nauka, Moscow, 1966, 568 pp.  mathscinet  zmath; English transl. Halsted Press (A division of John Wiley & Sons), New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1973, xxiii+524 pp.  mathscinet  zmath
2. A. A. Andronov and L. S. Pontryagin, Dokl. Akad. Nauk SSSR, 14:5 (1937), 247–250 (Russian)  zmath
3. V. Z. Grines and E. Ya. Gurevich, Mat. Zametki, 111:4 (2022), 616–619  mathnet  crossref  zmath; English transl. in Math. Notes, 111:4 (2022), 624–627  crossref
4. V. Z. Grines, E. A. Gurevich, and O. V. Pochinka, Probl. Mat. Anal., 79, Tamara Rozhkovskaya, Novosibirsk, 2015, 73–81  mathscinet  zmath; English transl. in J. Math. Sci. (N.Y.), 208:1 (2015), 81–90  crossref
5. V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, and O. V. Pochinka, Uspekhi Mat. Nauk, 74:1(445) (2019), 41–116  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 74:1 (2019), 37–110  crossref  adsnasa
6. J. Palis and S. Smale, Global analysis (Berkeley, Calif. 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231  mathscinet  zmath
7. M. M. Peixoto, Ann. of Math. (2), 69 (1959), 199–222  crossref  mathscinet  zmath
8. S. Ju. Piljugin, Differ. Uravn., 14:2 (1978), 245–254  mathnet  mathscinet  zmath; English transl. in Differ. Equ., 14 (1978), 170–177
9. H. Seifert and W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934, iv+353 pp.  zmath
10. S. Smale, Bull. Amer. Math. Soc., 73:6 (1967), 747–817  crossref  mathscinet  zmath
11. Ya. L. Umanskiĭ, Mat. Sb., 181:2 (1990), 212–239  mathnet  mathscinet  zmath; English transl. in Math. USSR-Sb., 69:1 (1991), 227–253  crossref  adsnasa
12. E. V. Zhuzhoma and V. S. Medvedev, Mat. Sb., 207:5 (2016), 69–92  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 207:5 (2016), 702–723  crossref  adsnasa

Citation: V. Z. Grines, E. Ya. Gurevich, “Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$”, Uspekhi Mat. Nauk, 77:4(466) (2022), 201–202; Russian Math. Surveys, 77:4 (2022), 759–761
Citation in format AMSBIB
\Bibitem{GriGur22}
\by V.~Z.~Grines, E.~Ya.~Gurevich
\paper Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$
\jour Uspekhi Mat. Nauk
\yr 2022
\vol 77
\issue 4(466)
\pages 201--202
\mathnet{http://mi.mathnet.ru/rm10047}
\crossref{https://doi.org/10.4213/rm10047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461389}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..759G}
\transl
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 4
\pages 759--761
\crossref{https://doi.org/10.4213/rm10047e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992300700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165333447}
Linking options:
  • https://www.mathnet.ru/eng/rm10047
  • https://doi.org/10.4213/rm10047e
  • https://www.mathnet.ru/eng/rm/v77/i4/p201
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:268
    Russian version PDF:24
    English version PDF:55
    Russian version HTML:136
    English version HTML:69
    References:64
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024