Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 1, Pages 1–45
DOI: https://doi.org/10.1070/RM10044
(Mi rm10044)
 

What do Abelian categories form?

D. B. Kaledinab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Laboratory of Algebraic Geometry and its Applications, HSE University, Russian Federation
References:
Abstract: Given two finitely presentable Abelian categories $A$ and $B$, we outline a construction of an Abelian category of functors from $A$ to $B$, which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of $A$ and $B$. The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology.
Bibliography: 29 titles.
Keywords: Abelian category, stable category, 2-category, Hochschild cohomology, Mac Lane cohomology.
Funding agency Grant number
Russian Science Foundation 21-11-00153
This work was supported by the Russian Science Foundation under grant no. 21-11-00153.
Received: 20.09.2021
Russian version:
Uspekhi Matematicheskikh Nauk, 2022, Volume 77, Issue 1(463), Pages 3–54
DOI: https://doi.org/10.4213/rm10044
Bibliographic databases:
Document Type: Article
UDC: 512.662
MSC: Primary 18E10; Secondary 18N10
Language: English
Original paper language: Russian
Citation: D. B. Kaledin, “What do Abelian categories form?”, Uspekhi Mat. Nauk, 77:1(463) (2022), 3–54; Russian Math. Surveys, 77:1 (2022), 1–45
Citation in format AMSBIB
\Bibitem{Kal22}
\by D.~B.~Kaledin
\paper What do Abelian categories form?
\jour Uspekhi Mat. Nauk
\yr 2022
\vol 77
\issue 1(463)
\pages 3--54
\mathnet{http://mi.mathnet.ru/rm10044}
\crossref{https://doi.org/10.4213/rm10044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461384}
\zmath{https://zbmath.org/?q=an:1495.18011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77....1K}
\transl
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 1
\pages 1--45
\crossref{https://doi.org/10.1070/RM10044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000790527400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130524191}
Linking options:
  • https://www.mathnet.ru/eng/rm10044
  • https://doi.org/10.1070/RM10044
  • https://www.mathnet.ru/eng/rm/v77/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:740
    Russian version PDF:253
    English version PDF:111
    Russian version HTML:400
    References:92
    First page:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024