Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2021, Volume 76, Issue 4, Pages 587–652
DOI: https://doi.org/10.1070/RM10007
(Mi rm10007)
 

This article is cited in 6 scientific papers (total in 6 papers)

Surveys

Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves

V. M. Buchstabera, A. V. Mikhailovbc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b University of Leeds, Leeds, UK
c Centre of Integrable Systems, P.G. Demidov Yaroslavl State University
References:
Abstract: This survey is devoted to integrable polynomial Hamiltonian systems associated with symmetric powers of plane algebraic curves. We focus our attention on the relations (discovered by the authors) between the Stäckel systems, Novikov's equations for the $g$th stationary Korteweg–de Vries hierarchy, the Dubrovin–Novikov coordinates on the universal bundle of Jacobians of hyperelliptic curves, and new systems obtained by considering the symmetric powers of curves when the power is not equal to the genus of the curve.
Bibliography: 52 titles.
Keywords: polynomial Hamiltonian systems, Stäckel systems, Korteweg–de Vries hierarchy, symmetric powers of curves, Abelian functions, systems of hydrodynamical type.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1397
EPSRC EP/V050451/1
The research of the second author was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (contract no. 075-02-2021-1397) and the Engineering and Physical Sciences Research Council (grant no. EP/V050451/1).
Received: 10.05.2021
Bibliographic databases:
Document Type: Article
UDC: 517.938+512.77
MSC: 14H70, 14K25, 37J35
Language: English
Original paper language: Russian
Citation: V. M. Buchstaber, A. V. Mikhailov, “Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves”, Russian Math. Surveys, 76:4 (2021), 587–652
Citation in format AMSBIB
\Bibitem{BucMik21}
\by V.~M.~Buchstaber, A.~V.~Mikhailov
\paper Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 4
\pages 587--652
\mathnet{http://mi.mathnet.ru//eng/rm10007}
\crossref{https://doi.org/10.1070/RM10007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4295018}
\zmath{https://zbmath.org/?q=an:1484.14072}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuMaS..76..587B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000712047200001}
\elib{https://elibrary.ru/item.asp?id=47522338}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118700437}
Linking options:
  • https://www.mathnet.ru/eng/rm10007
  • https://doi.org/10.1070/RM10007
  • https://www.mathnet.ru/eng/rm/v76/i4/p37
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:565
    Russian version PDF:151
    English version PDF:33
    Russian version HTML:222
    References:56
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024