Abstract:
The review considers the theoretical and experimental aspects of X-ray photoelectron diffraction and photoelectron holography — rapidly developing methods meant for investigation of the atomic structure of solid surfaces, in particular, nanostructures, which are formed on the surface during gas adsorption, epitaxial film growth and so on. It is demonstrated that the depth of analysis by these methods is a few nanometres; this provides characterization of the positions of atoms located both on the surface and below the surface. The methods are sensitive to the sort of atom and, in the case of high energy resolution, to the isolated chemical form of the elements. The accumulated experimental information on the application of these methods to study surface structures is analyzed and generalized. Bibliography — 122 references.
Received: 15.04.2013
Bibliographic databases:
Document Type:
Article
Language: English
Original paper language: Russian
Citation:
M. V. Kuznetsov, I. I. Ogorodnikov, A. S. Vorokh, “X-Ray photoelectron diffraction and photoelectron holography as investigation methods for the local atomic structure of solid surface”, Russian Chem. Reviews, 83:1 (2014), 13–37
\Bibitem{KuzOgoVor14}
\by M.~V.~Kuznetsov, I.~I.~Ogorodnikov, A.~S.~Vorokh
\paper X-Ray photoelectron diffraction and photoelectron holography as investigation methods for the local atomic structure of solid surface
\jour Russian Chem. Reviews
\yr 2014
\vol 83
\issue 1
\pages 13--37
\mathnet{http://mi.mathnet.ru/eng/rcr680}
\crossref{https://doi.org/10.1070/RC2014v083n01ABEH004400}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331064400002}
\elib{https://elibrary.ru/item.asp?id=21007343}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893276174}
Linking options:
https://www.mathnet.ru/eng/rcr680
https://doi.org/10.1070/RC2014v083n01ABEH004400
https://www.mathnet.ru/eng/rcr/v83/i1/p13
This publication is cited in the following 10 articles:
Artoni Kevin R. Ang, Yasufumi Umena, Ayana Sato-Tomita, Naoya Shibayama, Naohisa Happo, Riho Marumi, Yuta Yamamoto, Koji Kimura, Naomi Kawamura, Yu Takano, Tomohiro Matsushita, Yuji C. Sasaki, Jian-Ren Shen, Kouichi Hayashi, J Synchrotron Rad, 30:2 (2023), 368
Takayoshi Yokoya, J. Phys. Soc. Jpn., 91:9 (2022)
Yamamoto Y., Ang A.K.R., Kimura K., Matsushita T., Hirose Y., Oka D., Hayashi K., J. Electron Spectrosc. Relat. Phenom., 246 (2021), 147018
R. Ang Artoni Kevin, Yu. Fukatsu, K. Kimura, Yu. Yamamoto, T. Yonezawa, H. Nitta, A. Fleurence, S. Yamamoto, L. Matsuda, Yu. Yamada-Takamura, K. Hayashi, Jpn. J. Appl. Phys., 59:10 (2020), 100902
I. I. Ogorodnikov, M. V. Kuznetsov, F. Matsui, D. Yu. Usachov, L. V. Yashina, Appl. Surf. Sci., 505 (2020), 144531
D. Yu. Usachov, A. V. Tarasov, F. Matsui, M. Muntwiler, K. A. Bokai, V. O. Shevelev, O. Yu. Vilkov, M. V. Kuznetsov, L. V. Yashina, C. Laubschat, A. Cossaro, L. Floreano, A. Verdini, D. V. Vyalikh, 2D Mater., 6:4 (2019), 045046
M. V. Kuznetsov, I. I. Ogorodnikov, D. Yu. Usachov, C. Laubschat, D. V. Vyalikh, F. Matsui, L. V. Yashina, J. Phys. Soc. Jpn., 87:6 (2018), 061005
X. Liang, Ch. Lubin, C. Mathieu, N. Barrett, J. Appl. Crystallogr., 51:3 (2018), 935–942