Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 4-5, Pages 495–505
DOI: https://doi.org/10.1134/S1560354709040066
(Mi rcd978)
 

This article is cited in 16 scientific papers (total in 16 papers)

Proceedings of GDIS 2008, Belgrade

Hamiltonization of the generalized Veselova LR system

Yu. N. Fedorova, B. Jovanovićb

a Departament de Matemática I, Universitat Politecnica de Catalunya, Barcelona, E-08028 Spain
b Mathematical Institute SANU, Kneza Mihaila 36, 11000, Belgrade, Serbia
Citations (16)
Abstract: We revise the solution to the problem of Hamiltonization of the n-dimensional Veselova non-holonomic system studied previously in [1]. Namely, we give a short and direct proof of the hamiltonization theorem and also show the trajectorial equivalence of the problem with the geodesic flow on the ellipsoid.
Keywords: nonholonomic systems, integrability, geodesic flows.
Received: 06.02.2009
Accepted: 23.03.2009
Bibliographic databases:
Document Type: Personalia
MSC: 37J60, 37J35, 70H45
Language: English
Citation: Yu. N. Fedorov, B. Jovanović, “Hamiltonization of the generalized Veselova LR system”, Regul. Chaotic Dyn., 14:4-5 (2009), 495–505
Citation in format AMSBIB
\Bibitem{FedJov09}
\by Yu. N. Fedorov, B. Jovanovi\'c
\paper Hamiltonization of the generalized Veselova LR system
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 4-5
\pages 495--505
\mathnet{http://mi.mathnet.ru/rcd978}
\crossref{https://doi.org/10.1134/S1560354709040066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2551872}
\zmath{https://zbmath.org/?q=an:1229.37086}
Linking options:
  • https://www.mathnet.ru/eng/rcd978
  • https://www.mathnet.ru/eng/rcd/v14/i4/p495
  • This publication is cited in the following 16 articles:
    1. Jorge S. Garcia, Tomoki Ohsawa, “Controlled Lagrangians and Stabilization of Euler–Poincaré Equations with Symmetry Breaking Nonholonomic Constraints”, J Nonlinear Sci, 34:5 (2024)  crossref
    2. Garcia-Naranjo L. U. I. S. C. Vermeeren M. A. T. S., “Structure Preserving Discretization of Time-Reparametrized Hamiltonian Systems With Application to Nonholonomic Mechanics”, J. Comput. Dynam., 8:3 (2021), 241–271  crossref  mathscinet  isi  scopus
    3. Garcia-Naranjo L.C. Marrero J.C., “the Geometry of Nonholonomic Chaplygin Systems Revisited”, Nonlinearity, 33:3 (2020), 1297–1341  crossref  mathscinet  zmath  isi  scopus
    4. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
    5. Luis C. García-Naranjo, “Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88  mathnet  crossref
    6. Fasso F. Garcia-Naranjo L.C. Montaldi J., “Integrability and Dynamics of the N-Dimensional Symmetric Veselova TOP”, J. Nonlinear Sci., 29:3 (2019), 1205–1246  crossref  mathscinet  zmath  isi  scopus
    7. Garcia-Naranjo L.C., “Generalisation of Chaplygin'S Reducing Multiplier Theorem With An Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A-Math. Theor., 52:20 (2019), 205203  crossref  mathscinet  isi  scopus
    8. A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Math. Surveys, 69:3 (2014), 481–538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Andrey Tsiganov, “Poisson structures for two nonholonomic systems with partially reduced symmetries”, Journal of Geometric Mechanics, 6:3 (2014), 417  crossref
    10. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinam., 9:2 (2013), 141–202  mathnet
    11. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328  mathnet  crossref  mathscinet  zmath
    12. Applications of Contact Geometry and Topology in Physics, 2013, 277  crossref
    13. A. V. Tsiganov, “One family of conformally Hamiltonian systems”, Theoret. and Math. Phys., 173:2 (2012), 1481–1497  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    14. Manuel de León, “A historical review on nonholomic mechanics”, RACSAM, 106:1 (2012), 191  crossref
    15. Tomoki Ohsawa, Oscar E. Fernandez, Anthony M. Bloch, Dmitry V. Zenkov, “Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization”, Journal of Geometry and Physics, 61:8 (2011), 1263  crossref
    16. Božidar Jovanović, “Hamiltonization and Integrability of the Chaplygin Sphere in ℝ n”, J Nonlinear Sci, 20:5 (2010), 569  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:109
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025