Abstract:
A detailed description of topology of integrable billiard systems is given. For elliptical billiards and geodesic billiards on ellipsoid, the corresponding Fomenko graphs are constructed.
\Bibitem{DraRad09}
\by V. Dragovi\'c, M. Radnovi\'c
\paper Bifurcations of Liouville tori in elliptical billiards
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 4-5
\pages 479--494
\mathnet{http://mi.mathnet.ru/rcd977}
\crossref{https://doi.org/10.1134/S1560354709040054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2551871}
\zmath{https://zbmath.org/?q=an:1229.37065}
Linking options:
https://www.mathnet.ru/eng/rcd977
https://www.mathnet.ru/eng/rcd/v14/i4/p479
This publication is cited in the following 41 articles:
G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611
D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Moscow University Mathematics Bulletin, 79:3 (2024), 130–141
Sean Gasiorek, Milena Radnović, Contemporary Mathematics, 807, Recent Progress in Special Functions, 2024, 111
V. A. Kibkalo, D. A. Tuniyants, “Uporyadochennye billiardnye igry i topologicheskie svoistva billiardnykh knizhek”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 610–625
V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, 78:5 (2023), 207–215
G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19
Vladimir Dragović, Sean Gasiorek, Milena Radnović, “Billiard Ordered Games and Books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150
V. Dragović, S. Gasiorek, M. Radnović, “Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology”, Sb. Math., 213:9 (2022), 1187–1221
V. V. Vedyushkina, V. A. Kibkalo, “Billiardnye knizhki maloi slozhnosti i realizatsiya sloenii Liuvillya integriruemykh sistem”, Chebyshevskii sb., 23:1 (2022), 53–82
Anatoly T. Fomenko, Vladislav A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392
Fomenko A.T., Vedyushkina V.V., “Billiards With Changing Geometry and Their Connection With the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332
Pnueli M., Rom-Kedar V., “On the Structure of Hamiltonian Impact Systems”, Nonlinearity, 34:4 (2021), 2611–2658
E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28
V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225
G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Sb. Math., 211:11 (2020), 1503–1538
Moskvin V.A., “Algorithmic Construction of Two-Dimensional Singular Fibers of Atoms of Billiards in Non-Convex Domains”, Mosc. Univ. Math. Bull., 75:3 (2020), 91–101