Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 4, Pages 39–58
DOI: https://doi.org/10.1070/RD1999v004n04ABEH000130
(Mi rcd918)
 

This article is cited in 5 scientific papers (total in 5 papers)

On a Partially Hyperbolic KAM Theorem

M. Rudneva, S. Wigginsb

a Department of Mathematics/C1200, UT Austin, Austin, TX 78712
b Applied Mechanics and Control and Dynamical Systems, 107-81 Caltech, Pasadena, CA 91125
Citations (5)
Abstract: We prove structural stability under small perturbations of a family of real analytic Hamiltonian systems of $n+1$ degrees of freedom ($n \geqslant 2$), comprising an invariant partially hyperbolic n-torus with the Kronecker flow on it with a diophantine frequency, and an unstable (stable) exact Lagrangian submanifold (whisker), containing this torus. This is the preservation of the exact Lagrangian properties of the whisker that we focus upon. Hence, we develop a Normal form, which is valid globally in the neighborhood of the perturbed whisker and enables its representation as an exact Lagrangian submanifold in the original coordinates, whose generating function solves the Hamilton–Jacobi equation.
Received: 26.08.1999
Bibliographic databases:
Document Type: Article
MSC: 34C15, 34C20, 58F27
Language: English
Citation: M. Rudnev, S. Wiggins, “On a Partially Hyperbolic KAM Theorem”, Regul. Chaotic Dyn., 4:4 (1999), 39–58
Citation in format AMSBIB
\Bibitem{RudWig99}
\by M. Rudnev, S.~Wiggins
\paper On a Partially Hyperbolic KAM Theorem
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 4
\pages 39--58
\mathnet{http://mi.mathnet.ru/rcd918}
\crossref{https://doi.org/10.1070/RD1999v004n04ABEH000130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780303}
\zmath{https://zbmath.org/?q=an:1012.37045}
Linking options:
  • https://www.mathnet.ru/eng/rcd918
  • https://www.mathnet.ru/eng/rcd/v4/i4/p39
  • This publication is cited in the following 5 articles:
    1. H.W. Broer, Mikhail B. Sevryuk, Handbook of Dynamical Systems, 3, 2010, 249  crossref
    2. Arnold's Problems, 2005, 181  crossref
    3. Yong Li, Yingfei Yi, “Persistence of hyperbolic tori in Hamiltonian systems”, Journal of Differential Equations, 208:2 (2005), 344  crossref
    4. M. B. Sevryuk, “The classical KAM theory at the dawn of the twenty-first century”, Mosc. Math. J., 3:3 (2003), 1113–1144  mathnet  crossref  mathscinet  zmath
    5. Michael Rudnev, Stephen Wiggins, “Erratum to “Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems” [Physica D 114 (1998) 3–80]”, Physica D: Nonlinear Phenomena, 145:3-4 (2000), 349  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:114
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025