Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 4, Pages 19–38
DOI: https://doi.org/10.1070/RD1999v004n04ABEH000129
(Mi rcd917)
 

This article is cited in 9 scientific papers (total in 9 papers)

Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes

R. Douadya, J.-C. Yoccozb

a C.N.R.S. et C.M.L.A., Ecole Normale Supérieure de Cachan, 61 av. du Pdt. Wilson, 94235 Cachan, France
b Collège de France, 3 rue d'Ulm, 75005 Paris, France
Citations (9)
Abstract: Let $f$ be a $C^1$-diffeomorphism of the circle $\mathbb{T}^1 = \mathbb{R} / \mathbb{Z}$ with an irrational rotation number. We show that, for every real number $s$, there exists a probability measure $\mu_s$, unique if $f$ is $C^2$, that satisfies, for any function $\varphi \in C^0 (\mathbb{T}^1)$:
$$\int \limits_{\mathbb{T}^1} \varphi d \mu_s=\int \limits_{\mathbb{T}^1} \varphi \circ f (Df)^s d \mu_s.$$
This measure continuously depends on the pair $(s,f)$ when one considers the weak topology on measures and the $C^1$-topology on diffeomorphisms. Examples are given where uniqueness fails with $f$ of class $C^1$. These results partially extend to the case of a rational rotation number for non degenerate semi-stable diffeomorphisms of the circle. We then show that the set of diffeomorphisms that have a given irrational rotation number has a tangent hyperplane at any $C^2$-diffeomorphism, the direction of which is the kernel of $\mu{-1}$.
Received: 04.10.1999
Bibliographic databases:
Document Type: Article
MSC: 58F08
Language: English
Citation: R. Douady, J.-C. Yoccoz, “Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes”, Regul. Chaotic Dyn., 4:4 (1999), 19–38
Citation in format AMSBIB
\Bibitem{DouYoc99}
\by R. Douady, J.-C. Yoccoz
\paper Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 4
\pages 19--38
\mathnet{http://mi.mathnet.ru/rcd917}
\crossref{https://doi.org/10.1070/RD1999v004n04ABEH000129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780302}
\zmath{https://zbmath.org/?q=an:1012.37024}
Linking options:
  • https://www.mathnet.ru/eng/rcd917
  • https://www.mathnet.ru/eng/rcd/v4/i4/p19
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024