Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 4, Pages 19–38
DOI: https://doi.org/10.1070/RD1999v004n04ABEH000129
(Mi rcd917)
 

This article is cited in 10 scientific papers (total in 10 papers)

Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes

R. Douadya, J.-C. Yoccozb

a C.N.R.S. et C.M.L.A., Ecole Normale Supérieure de Cachan, 61 av. du Pdt. Wilson, 94235 Cachan, France
b Collège de France, 3 rue d'Ulm, 75005 Paris, France
Citations (10)
Abstract: Let f be a C1-diffeomorphism of the circle T1=R/Z with an irrational rotation number. We show that, for every real number s, there exists a probability measure μs, unique if f is C2, that satisfies, for any function φC0(T1):
T1φdμs=T1φf(Df)sdμs.
This measure continuously depends on the pair (s,f) when one considers the weak topology on measures and the C1-topology on diffeomorphisms. Examples are given where uniqueness fails with f of class C1. These results partially extend to the case of a rational rotation number for non degenerate semi-stable diffeomorphisms of the circle. We then show that the set of diffeomorphisms that have a given irrational rotation number has a tangent hyperplane at any C2-diffeomorphism, the direction of which is the kernel of μ1.
Received: 04.10.1999
Bibliographic databases:
Document Type: Article
MSC: 58F08
Language: English
Citation: R. Douady, J.-C. Yoccoz, “Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes”, Regul. Chaotic Dyn., 4:4 (1999), 19–38
Citation in format AMSBIB
\Bibitem{DouYoc99}
\by R. Douady, J.-C. Yoccoz
\paper Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 4
\pages 19--38
\mathnet{http://mi.mathnet.ru/rcd917}
\crossref{https://doi.org/10.1070/RD1999v004n04ABEH000129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780302}
\zmath{https://zbmath.org/?q=an:1012.37024}
Linking options:
  • https://www.mathnet.ru/eng/rcd917
  • https://www.mathnet.ru/eng/rcd/v4/i4/p19
  • This publication is cited in the following 10 articles:
    1. NATALIYA GONCHARUK, MICHAEL YAMPOLSKY, “Renormalization of circle maps and smoothness of Arnold tongues”, Ergod. Th. Dynam. Sys., 2025, 1  crossref
    2. Edson de Faria, Pablo Guarino, Bruno Nussenzveig, “Automorphic measures and invariant distributions for circle dynamics”, Math. Z., 306:2 (2024)  crossref
    3. Edson de Faria, Pablo Guarino, Dynamics of Circle Mappings, 2024, 187  crossref
    4. Edson de Faria, Pablo Guarino, Dynamics of Circle Mappings, 2024, 43  crossref
    5. Andrés Navas, “On Conjugates and the Asymptotic Distortion of One-Dimensional C1+bv Diffeomorphisms”, International Mathematics Research Notices, 2023:1 (2023), 372  crossref
    6. Pablo D. Carrasco, Federico Rodriguez-Hertz, “Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map”, Isr. J. Math., 2023  crossref
    7. JOHANNES CHRISTENSEN, KLAUS THOMSEN, “KMS states on the crossed product -algebra of a homeomorphism”, Ergod. Th. Dynam. Sys., 42:4 (2022), 1373  crossref
    8. Biswas K., “Loewner Evolution of Hedgehogs and 2-Conformal Measures of Circle Maps”, Ergod. Theory Dyn. Syst., 41:9 (2021), PII S014338572000084X, 2734–2753  crossref  mathscinet  isi  scopus
    9. Pablo D. Carrasco, Federico Rodriguez-Hertz, “Geometrical constructions of equilibrium states”, Mathematics Research Reports, 2 (2021), 45  crossref
    10. Andrés Navas, Michele Triestino, “On the invariant distributions of $C^2$ circle diffeomorphisms of irrational rotation number”, Math. Z., 274:1-2 (2013), 315  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:146
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025