|
This article is cited in 9 scientific papers (total in 9 papers)
Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes
R. Douadya, J.-C. Yoccozb a C.N.R.S. et C.M.L.A., Ecole Normale Supérieure de Cachan,
61 av. du Pdt. Wilson, 94235 Cachan, France
b Collège de France, 3 rue d'Ulm,
75005 Paris, France
Abstract:
Let $f$ be a $C^1$-diffeomorphism of the circle $\mathbb{T}^1 = \mathbb{R} / \mathbb{Z}$ with an irrational rotation number. We show that, for every real number $s$, there exists a probability measure $\mu_s$, unique if $f$ is $C^2$, that satisfies, for any function $\varphi \in C^0 (\mathbb{T}^1)$:
$$\int \limits_{\mathbb{T}^1} \varphi d \mu_s=\int \limits_{\mathbb{T}^1} \varphi \circ f (Df)^s d \mu_s.$$
This measure continuously depends on the pair $(s,f)$ when one considers the weak topology on measures and the $C^1$-topology on diffeomorphisms. Examples are given where uniqueness fails with $f$ of class $C^1$.
These results partially extend to the case of a rational rotation number for non degenerate semi-stable diffeomorphisms of the circle.
We then show that the set of diffeomorphisms that have a given irrational rotation number has a tangent hyperplane at any $C^2$-diffeomorphism, the direction of which is the kernel of $\mu{-1}$.
Received: 04.10.1999
Citation:
R. Douady, J.-C. Yoccoz, “Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes”, Regul. Chaotic Dyn., 4:4 (1999), 19–38
Linking options:
https://www.mathnet.ru/eng/rcd917 https://www.mathnet.ru/eng/rcd/v4/i4/p19
|
Statistics & downloads: |
Abstract page: | 111 |
|