|
This article is cited in 9 scientific papers (total in 9 papers)
On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$
K. P. Hadelera, E. N. Selivanovab a Mathematische Fakultät, Universität Tübingen,
Auf der Morgenstelle 10, 72076 Tübingen, Germany
b Department of Geometry,
Nizhny Novgorod State Pedagogical University,
603000 Russia, Nizhny Novgorod, ul. Ulyanova 1
Abstract:
There is a well-known example of an integrable conservative system on $S^2$, the case of Kovalevskaya in the dynamics of a rigid body, possessing an integral of fourth degree in momenta. The aim of this paper is to construct new families of examples of conservative systems on $S^2$ possessing an integral of fourth degree in momenta.
Received: 06.01.1999
Citation:
K. P. Hadeler, E. N. Selivanova, “On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$”, Regul. Chaotic Dyn., 4:3 (1999), 45–52
Linking options:
https://www.mathnet.ru/eng/rcd911 https://www.mathnet.ru/eng/rcd/v4/i3/p45
|
Statistics & downloads: |
Abstract page: | 74 |
|