Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 3, Pages 45–52
DOI: https://doi.org/10.1070/RD1999v004n03ABEH000115
(Mi rcd911)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$

K. P. Hadelera, E. N. Selivanovab

a Mathematische Fakultät, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
b Department of Geometry, Nizhny Novgorod State Pedagogical University, 603000 Russia, Nizhny Novgorod, ul. Ulyanova 1
Citations (9)
Abstract: There is a well-known example of an integrable conservative system on $S^2$, the case of Kovalevskaya in the dynamics of a rigid body, possessing an integral of fourth degree in momenta. The aim of this paper is to construct new families of examples of conservative systems on $S^2$ possessing an integral of fourth degree in momenta.
Received: 06.01.1999
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. P. Hadeler, E. N. Selivanova, “On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$”, Regul. Chaotic Dyn., 4:3 (1999), 45–52
Citation in format AMSBIB
\Bibitem{HadSel99}
\by K. P. Hadeler, E. N. Selivanova
\paper On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 3
\pages 45--52
\mathnet{http://mi.mathnet.ru/rcd911}
\crossref{https://doi.org/10.1070/RD1999v004n03ABEH000115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1777879}
\zmath{https://zbmath.org/?q=an:1012.37037}
Linking options:
  • https://www.mathnet.ru/eng/rcd911
  • https://www.mathnet.ru/eng/rcd/v4/i3/p45
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024