Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2000, Volume 5, Issue 2, Pages 171–180
DOI: https://doi.org/10.1070/RD2000v005n02ABEH000139
(Mi rcd870)
 

This article is cited in 12 scientific papers (total in 12 papers)

Integrable Systems, Poisson Pencils, and Hyperelliptic Lax Pairs

Yu. N. Fedorov

Department of Mathematics and Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia
Citations (12)
Abstract: In the modern approach to integrable Hamiltonian systems, their representation in the Lax form (the Lax pair or the LA pair) plays a key role. Such a representation also makes it possible to construct and solve multi-dimensional integrable generalizations of various problems of dynamics. The best known examples are the generalizations of Euler's and Clebsch's classical systems in the rigid body dynamics, whose Lax pairs were found by Manakov [10] and Perelomov [12]. These Lax pairs include an additional (spectral) parameter defined on the compactified complex plane or an elliptic curve (Riemann surface of genus one). Until now there were no examples of LA pairs representing physical systems with a spectral parameter running through an algebraic curve of genus more than one (the conditions for the existence of such Lax pairs were studied in [11]).
In the given paper we consider a new Lax pair for the multidimensional Manakov system on the Lie algebra so(m) with a spectral parameter defined on a certain unramified covering of a hyperelliptic curve. An analogous LA pair for the Clebsch–Perelomov system on the Lie algebra e(n) can be indicated.
In addition, the hyperelliptic Lax pair enables us to obtain the multidimensional generalizations of the classical integrable Steklov–Lyapunov systems in the problem of a rigid body motion in an ideal fluid. The latter is known to be a Hamiltonian system on the algebra e(3). It turns out that these generalized systems are defined not on the algebra e(n), as one might expect, but on a certain product so(m)+so(m). A proof of the integrability of the systems is based on the method proposed in [1].
Received: 29.01.2000
Bibliographic databases:
Document Type: Article
MSC: 22D20, 70E15
Language: English
Citation: Yu. N. Fedorov, “Integrable Systems, Poisson Pencils, and Hyperelliptic Lax Pairs”, Regul. Chaotic Dyn., 5:2 (2000), 171–180
Citation in format AMSBIB
\Bibitem{Fed00}
\by Yu. N. Fedorov
\paper Integrable Systems, Poisson Pencils, and Hyperelliptic Lax Pairs
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 2
\pages 171--180
\mathnet{http://mi.mathnet.ru/rcd870}
\crossref{https://doi.org/10.1070/RD2000v005n02ABEH000139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780708}
\zmath{https://zbmath.org/?q=an:0955.22007}
Linking options:
  • https://www.mathnet.ru/eng/rcd870
  • https://www.mathnet.ru/eng/rcd/v5/i2/p171
  • This publication is cited in the following 12 articles:
    1. A. Mikhailov, T. Skrypnyk, “Zhukovsky-Volterra top and quantisation ideals”, Nuclear Physics B, 1006 (2024), 116648  crossref
    2. Abdurakhimov B.A., Tashmetov M.Yu., Bakirov B.A., Yuldashev B.S., Kichanov S.E., Kozlenko D.P., Ismatov N.B., “Structural Studies of the Qarakhanid Dirham Using X-Ray Diffraction and Neutron Tomography Methods”, J. Surf. Ingestig., 15:6 (2021), 1232–1237  crossref  isi  scopus
    3. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    4. Maciej Błaszak, Quantum versus Classical Mechanics and Integrability Problems, 2019, 183  crossref
    5. T Skrypnyk, “Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field”, J. Phys. A: Math. Theor., 50:32 (2017), 325206  crossref
    6. T. Skrypnyk, “Generalized shift elements and classical r-matrices: Construction and applications”, Journal of Geometry and Physics, 80 (2014), 71  crossref
    7. T. Skrypnyk, “Elliptic three-boson system, “two-level three-mode” JCD-type models and non-skew-symmetric classical r-matrices”, Nuclear Physics B, 856:2 (2012), 552  crossref
    8. Yuri Fedorov, Inna Basak, “Separation of Variables and Explicit Theta-function Solution of the Classical Steklov–Lyapunov Systems: A Geometric and Algebraic Geometric Background”, Regul. Chaotic Dyn., 16:3 (2011), 374–395  mathnet  crossref
    9. I. Basak, “Bifurcation analysis of the Zhukovskii–Volterra system via bi-Hamiltonian approach”, Regul. Chaotic Dyn., 15:6 (2010), 677–684  mathnet  crossref
    10. I. Basak, “Explicit Solution of the Zhukovski–Volterra Gyrostat”, Regul. Chaotic Dyn., 14:2 (2009), 223–236  mathnet  crossref
    11. A M Perelomov, “Motion of four-dimensional rigid body around a fixed point: an elementary approach I”, J. Phys. A: Math. Gen., 38:47 (2005), L801  crossref
    12. A. V. Tsiganov, “On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds e(3) and so(4)”, J. Math. Sci. (N. Y.), 136:1 (2006), 3641–3647  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:123
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025