Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2000, Volume 5, Issue 2, Pages 157–170
DOI: https://doi.org/10.1070/RD2000v005n02ABEH000138
(Mi rcd869)
 

This article is cited in 12 scientific papers (total in 13 papers)

Continuous Averaging in Multi-frequency Slow-fast Systems

A. V. Pronina, D. V. Treschevb

a Moscow State University, Vorob'ievy Gory, V 10-50, Main Building, 119899, Moscow, Russia
b Faculty of Mechanics and Mathematics, Department of Theoretical Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia
Citations (13)
Abstract: It is well-known that in real-analytic multi-frequency slow-fast ODE systems the dependence of the right-hand sides on fast angular variables can be reduced to an exponentially small order by a near-identical change of the variables. Realistic constructive estimates for the corresponding exponentially small terms are obtained.
Received: 12.12.1999
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. V. Pronin, D. V. Treschev, “Continuous Averaging in Multi-frequency Slow-fast Systems”, Regul. Chaotic Dyn., 5:2 (2000), 157–170
Citation in format AMSBIB
\Bibitem{ProTre00}
\by A. V. Pronin, D. V. Treschev
\paper Continuous Averaging in Multi-frequency Slow-fast Systems
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 2
\pages 157--170
\mathnet{http://mi.mathnet.ru/rcd869}
\crossref{https://doi.org/10.1070/RD2000v005n02ABEH000138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780707}
\zmath{https://zbmath.org/?q=an:0977.34040}
Linking options:
  • https://www.mathnet.ru/eng/rcd869
  • https://www.mathnet.ru/eng/rcd/v5/i2/p157
  • This publication is cited in the following 13 articles:
    1. S. V. Bolotin, O. E. Zubelevich, V. V. Kozlov, S. B. Kuksin, A. I. Neishtadt, “Dmitrii Valerevich Treschev (k shestidesyatiletiyu so dnya rozhdeniya)”, UMN, 80:1(481) (2025), 165–170  mathnet  crossref
    2. A. I. Neishtadt, D. V. Treschev, “Dynamical phenomena connected with stability loss of equilibria and periodic trajectories”, Russian Math. Surveys, 76:5 (2021), 883–926  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Delshams A. Gonchenko M. Gutierrez P., “Exponentially Small Splitting of Separatrices Associated to 3D Whiskered Tori With Cubic Frequencies”, Commun. Math. Phys., 378:3 (2020), 1931–1976  crossref  mathscinet  zmath  isi  scopus
    4. Amadeu Delshams, Marina Gonchenko, Pere Gutiérrez, “Exponentially Small Splitting of Separatrices and Transversality Associated to Whiskered Tori with Quadratic Frequency Ratio”, SIAM J. Appl. Dyn. Syst., 15:2 (2016), 981  crossref
    5. Jinxin Xue, “Continuous averaging proof of the Nekhoroshev theorem”, Discrete & Continuous Dynamical Systems - A, 35:8 (2015), 3827  crossref
    6. Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 239  crossref
    7. Amadeu Delshams, Marina Gonchenko, Pere Gutiérrez, “Continuation of the Exponentially Small Transversality for the Splitting of Separatrices to a Whiskered Torus with Silver Ratio”, Regul. Chaotic Dyn., 19:6 (2014), 663–680  mathnet  crossref  mathscinet  zmath
    8. Pere Gutiérrez, Marina Gonchenko, Amadeu Delshams, “Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies”, ERA-MS, 21 (2014), 41  crossref
    9. Oleg Zubelevich, “On Analytic Solutions to the Navier-Stokes Equation in 3-D Torus”, FE, 50:2 (2007), 171  crossref
    10. Fuzhong Cong, “The approximate decomposition of exponential order of slow–fast motions in multifrequency systems”, Journal of Differential Equations, 196:2 (2004), 466  crossref
    11. J. Math. Sci. (N. Y.), 128:2 (2005), 2726–2746  mathnet  crossref  mathscinet  zmath
    12. J. Math. Sci. (N. Y.), 128:2 (2005), 2839–2842  mathnet  crossref  mathscinet  zmath
    13. O. È. Zubelevich, “On the Majorant Method for the Cauchy–Kovalevskaya Problem”, Math. Notes, 69:3 (2001), 329–339  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025