Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 4, Pages 410–436
DOI: https://doi.org/10.1134/S1560354716040031
(Mi rcd86)
 

This article is cited in 3 scientific papers (total in 3 papers)

Holomorphic Normal Form of Nonlinear Perturbations of Nilpotent Vector Fields

Laurent Stolovitcha, Freek Verstringeb

a CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621, Université de Nice — Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France
b Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium
Citations (3)
References:
Abstract: We consider germs of holomorphic vector fields at a fixed point having a nilpotent linear part at that point, in dimension n3. Based on Belitskii's work, we know that such a vector field is formally conjugate to a (formal) normal form. We give a condition on that normal form which ensures that the normalizing transformation is holomorphic at the fixed point. We shall show that this sufficient condition is a nilpotent version of Bruno's condition (A). In dimension 2, no condition is required since, according to Stróżyna–Żoładek, each such germ is holomorphically conjugate to a Takens normal form. Our proof is based on Newton's method and sl2(C)-representations.
Keywords: local analytic dynamics, fixed point, normal form, Belitskii normal form, small divisors, Newton method, analytic invariant manifold, complete integrability.
Funding agency Grant number
Agence Nationale de la Recherche ANR-10-BLAN 0102
Research of L. Stolovitch was supported by ANR grant “ANR-10-BLAN 0102” for the project DynPDE.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Laurent Stolovitch, Freek Verstringe, “Holomorphic Normal Form of Nonlinear Perturbations of Nilpotent Vector Fields”, Regul. Chaotic Dyn., 21:4 (2016), 410–436
Citation in format AMSBIB
\Bibitem{StoVer16}
\by Laurent~Stolovitch, Freek~Verstringe
\paper Holomorphic Normal Form of Nonlinear Perturbations of Nilpotent Vector Fields
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 4
\pages 410--436
\mathnet{http://mi.mathnet.ru/rcd86}
\crossref{https://doi.org/10.1134/S1560354716040031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380679700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980334605}
Linking options:
  • https://www.mathnet.ru/eng/rcd86
  • https://www.mathnet.ru/eng/rcd/v21/i4/p410
  • This publication is cited in the following 3 articles:
    1. F. Mokhtari, J. A. Sanders, “Equivariant decomposition of polynomial vector fields”, Commun. Contemp. Math., 23:08 (2021), 2050083  crossref  mathscinet  isi  scopus
    2. E. Strozyna, H. Zoladek, “Analytic properties of the complete formal normal form for the Bogdanov-Takens singularity”, Nonlinearity, 34:5 (2021), 3046–3082  crossref  mathscinet  isi  scopus
    3. M. Gazor, F. Mokhtari, J. A. Sanders, “Vector potential normal form classification for completely integrable solenoidal nilpotent singularities”, J. Differ. Equ., 267:1 (2019), 407–442  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:174
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025