Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 4, Pages 390–409
DOI: https://doi.org/10.1134/S156035471604002X
(Mi rcd85)
 

This article is cited in 15 scientific papers (total in 15 papers)

Realizing Nonholonomic Dynamics as Limit of Friction Forces

Jaap Eldering

Universidade de São Paulo — ICMC, Avenida Trabalhador Sao-carlense 400, CEP 13566-590, Sao Carlos, SP, Brazil
Citations (15)
References:
Abstract: The classical question whether nonholonomic dynamics is realized as limit of friction forces was first posed by Carathéodory. It is known that, indeed, when friction forces are scaled to infinity, then nonholonomic dynamics is obtained as a singular limit.
Our results are twofold. First, we formulate the problem in a differential geometric context. Using modern geometric singular perturbation theory in our proof, we then obtain a sharp statement on the convergence of solutions on infinite time intervals. Secondly, we set up an explicit scheme to approximate systems with large friction by a perturbation of the nonholonomic dynamics. The theory is illustrated in detail by studying analytically and numerically the Chaplygin sleigh as an example. This approximation scheme offers a reduction in dimension and has potential use in applications.
Keywords: nonholonomic dynamics, friction, constraint realization, singular perturbation theory, Lagrange mechanics.
Funding agency Grant number
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior PVE11-2012
This research was supported by the Capes grant PVE11-2012.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jaap Eldering, “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409
Citation in format AMSBIB
\Bibitem{Eld16}
\by Jaap~Eldering
\paper Realizing Nonholonomic Dynamics as Limit of Friction Forces
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 4
\pages 390--409
\mathnet{http://mi.mathnet.ru/rcd85}
\crossref{https://doi.org/10.1134/S156035471604002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380679700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980377955}
Linking options:
  • https://www.mathnet.ru/eng/rcd85
  • https://www.mathnet.ru/eng/rcd/v21/i4/p390
  • This publication is cited in the following 15 articles:
    1. Alexander Koshelev, Eugene Kugushev, Tatiana Shahova, Springer Proceedings in Mathematics & Statistics, 453, Perspectives in Dynamical Systems I — Applications, 2024, 319  crossref
    2. A. A. Koshelev, E. I. Kugushev, T. V. Shahova, “On the motion of a ball between rotating planes with viscous friction”, Moscow University Mеchanics Bulletin, 79:3 (2024), 110–117  mathnet  crossref  crossref  elib
    3. Vaughn Gzenda, Robin Chhabra, “Affine connection approach to the realization of nonholonomic constraints by strong friction forces”, Nonlinear Dyn, 2024  crossref
    4. Benliang Wang, Donghua Shi, Zhonggui Yi, “Constraint Realization‐Based Hamel Field Integrator for Geometrically Exact Planar Euler–Bernoulli Beam Dynamics”, Numerical Meth Engineering, 2024  crossref
    5. E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57  mathnet  crossref  elib
    6. T. B. Ivanova, “The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane”, Rus. J. Nonlin. Dyn., 15:2 (2019), 171–178  mathnet  crossref  mathscinet  elib
    7. M. D. Kvalheim, B. Bittner, Sh. Revzen, “Gait modeling and optimization for the perturbed Stokes regime”, Nonlinear Dyn., 97:4 (2019), 2249–2270  crossref  zmath  isi  scopus
    8. Alexander Kobrin, Vladimir Sobolev, Trends in Mathematics, 11, Extended Abstracts Spring 2018, 2019, 1  crossref
    9. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    10. Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820  mathnet  crossref
    11. J. Eldering, M. Kvalheim, Sh. Revzen, “Global linearization and fiber bundle structure of invariant manifolds”, Nonlinearity, 31:9 (2018), 4202–4245  crossref  mathscinet  zmath  isi  scopus
    12. A Kobrin, V Sobolev, “Decomposition of nonholonomic mechanics models”, J. Phys.: Conf. Ser., 1096 (2018), 012054  crossref
    13. S. Koshkin, V. Jovanovic, “Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells”, J. Eng. Math., 106:1 (2017), 123–141  crossref  mathscinet  zmath  isi  scopus
    14. A. Kobrin, V. Sobolev, “Integral manifolds of fast-slow systems in nonholonomic mechanics”, 3rd International Conference Information Technology and Nanotechnology (ITNT-2017), Procedia Engineering, 201, eds. V. Soifer, N. Kazanskiy, O. Korotkova, S. Sazhin, Elsevier Science BV, 2017, 556–560  crossref  isi  scopus
    15. Alexander P. Ivanov, “On Final Motions of a Chaplygin Ball on a Rough Plane”, Regul. Chaotic Dyn., 21:7-8 (2016), 804–810  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:290
    References:45
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025