Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2001, Volume 6, Issue 2, Pages 205–210
DOI: https://doi.org/10.1070/RD2001v006n02ABEH000170
(Mi rcd838)
 

This article is cited in 19 scientific papers (total in 19 papers)

The Riemannium

P. Leboeuf, A. Monastra, O. Bohigas

Laboratoire de Physique Théorique et Modèles Statistiques, Unité Mixte de Recherche de l'Université Paris XI et du CNRS Bât. 100, Université de Paris-Sud, 91405 Orsay Cedex, France
Citations (19)
Abstract: The properties of a fictitious, fermionic, many-body system based on the complex zeros of the Riemann zeta function are studied. The imaginary part of the zeros are interpreted as mean-field single-particle energies, and one fills them up to a Fermi energy EFEF. The distribution of the total energy is shown to be non-Gaussian, asymmetric and independent of EFEF in the limit EFEF. The moments of the limit distribution are computed analytically. The autocorrelation function, the finite energy corrections, and a comparison with random matrix theory are also discussed.
Received: 21.03.2001
Bibliographic databases:
Document Type: Article
MSC: 11M26, 82B44
Language: English
Citation: P. Leboeuf, A. Monastra, O. Bohigas, “The Riemannium”, Regul. Chaotic Dyn., 6:2 (2001), 205–210
Citation in format AMSBIB
\Bibitem{LebMonBoh01}
\by P.~Leboeuf, A.~Monastra, O.~Bohigas
\paper The Riemannium
\jour Regul. Chaotic Dyn.
\yr 2001
\vol 6
\issue 2
\pages 205--210
\mathnet{http://mi.mathnet.ru/rcd838}
\crossref{https://doi.org/10.1070/RD2001v006n02ABEH000170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1843665}
\zmath{https://zbmath.org/?q=an:0988.11039}
Linking options:
  • https://www.mathnet.ru/eng/rcd838
  • https://www.mathnet.ru/eng/rcd/v6/i2/p205
  • This publication is cited in the following 19 articles:
    1. Wolf M., “Will a Physicist Prove the Riemann Hypothesis?”, Rep. Prog. Phys., 83:3 (2020), 036001  crossref  mathscinet  isi  scopus
    2. Sierra G., “The Riemann Zeros as Spectrum and the Riemann Hypothesis”, Symmetry-Basel, 11:4 (2019), 494  crossref  zmath  isi  scopus
    3. C. Castro Perelman, “On the Riemann Hypothesis, complex scalings and logarithmic time reversal”, Journal of Geometry and Physics, 129 (2018), 133  crossref
    4. Johann Bartel, R. K. Bhaduri, Matthias Brack, M. V. N. Murthy, “Asymptotic prime partitions of integers”, Phys. Rev. E, 95:5 (2017)  crossref
    5. J. G. Dueñas, N. F. Svaiter, “Riemann zeta zeros and zero-point energy”, Int. J. Mod. Phys. A, 29:09 (2014), 1450051  crossref
    6. Germán Sierra, “The Riemann zeros as energy levels of a Dirac fermion in a potential built from the prime numbers in Rindler spacetime”, J. Phys. A: Math. Theor., 47:32 (2014), 325204  crossref
    7. R Band, J M Harrison, C H Joyner, “Finite pseudo orbit expansions for spectral quantities of quantum graphs”, J. Phys. A: Math. Theor., 45:32 (2012), 325204  crossref
    8. JONATHAN M HARRISON, KLAUS KIRSTEN, “VACUUM ENERGY OF SCHRÖDINGER OPERATORS ON METRIC GRAPHS”, Int. J. Mod. Phys. Conf. Ser., 14 (2012), 357  crossref
    9. Piotr Chmielowski, “General Covariance, Spectrum of Riemannium, and a Stress Test Calculation Formula”, SSRN Journal, 2011  crossref
    10. Dániel Schumayer, David A. W. Hutchinson, “Colloquium: Physics of the Riemann hypothesis”, Rev. Mod. Phys., 83:2 (2011), 307  crossref
    11. G Berkolaiko, J M Harrison, J H Wilson, “Mathematical aspects of vacuum energy on quantum graphs”, J. Phys. A: Math. Theor., 42:2 (2009), 025204  crossref
    12. W. T. Lu, Weiqiao Zeng, S. Sridhar, “Duality between quantum and classical dynamics for integrable billiards”, Phys. Rev. E, 73:4 (2006)  crossref
    13. A. Relaño, J. Retamosa, E. Faleiro, R. A. Molina, A. P. Zuker, “1∕fnoise and very high spectral rigidity”, Phys. Rev. E, 73:2 (2006)  crossref
    14. Oriol Bohigas, “Quantum Chaos”, Nuclear Physics A, 751 (2005), 343  crossref
    15. Michael Trott, The Mathematica GuideBook for Programming, 2004, 1  crossref
    16. P. Leboeuf, International Conference on Theoretical Physics, 2003, 727  crossref
    17. P. Leboeuf, A.G. Monastra, “Quantum thermodynamic fluctuations of a chaotic Fermi-gas model”, Nuclear Physics A, 724:1-2 (2003), 69  crossref
    18. O. Bohigas, P. Leboeuf, “Nuclear Masses: Evidence of Order-Chaos Coexistence”, Phys. Rev. Lett., 88:9 (2002)  crossref
    19. P. Leboeuf, A.G. Monastra, “Thermodynamics of Small Fermi Systems: Quantum Statistical Fluctuations”, Annals of Physics, 297:1 (2002), 127  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025