Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2001, Volume 6, Issue 2, Pages 119–204
DOI: https://doi.org/10.1070/RD2001v006n02ABEH000169
(Mi rcd837)
 

This article is cited in 144 scientific papers (total in 144 papers)

Invariant Tori in Non-Degenerate Nearly Integrable Hamiltonian Systems

H. Rüssmann

Fachbereich Mathematik, Universität Mainz, 55099 Mainz, Germany
Citations (144)
Abstract: Invariant tori for analytic nearly integrable Hamiltonian systems are constructed under rather weak sufficient conditions being even necessary in the case of maximal invariant tori. All small devisors are controlled by a general approximation function the properties of which correspond to the Bruno condition in analytic problems near a singular point. The admitted size of the perturbations is numerically determined in numerically given systems.
Received: 10.03.2001
Bibliographic databases:
Document Type: Article
MSC: 34C27, 37J40, 70H08
Language: English
Citation: H. Rüssmann, “Invariant Tori in Non-Degenerate Nearly Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 6:2 (2001), 119–204
Citation in format AMSBIB
\Bibitem{Rus01}
\by H. R\"ussmann
\paper Invariant Tori in Non-Degenerate Nearly Integrable Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2001
\vol 6
\issue 2
\pages 119--204
\mathnet{http://mi.mathnet.ru/rcd837}
\crossref{https://doi.org/10.1070/RD2001v006n02ABEH000169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1843664}
\zmath{https://zbmath.org/?q=an:0992.37050}
Linking options:
  • https://www.mathnet.ru/eng/rcd837
  • https://www.mathnet.ru/eng/rcd/v6/i2/p119
  • This publication is cited in the following 144 articles:
    1. Zineb Hassainia, Emeric Roulley, “Boundary effects on the emergence of quasi-periodic solutions for Euler equations”, Nonlinearity, 38:1 (2025), 015016  crossref
    2. Meina Gao, Jianjun Liu, Zejing Liu, “Quasi-periodic solutions around plane wave of high dimensional nonlinear Schrödinger equation”, Journal of Differential Equations, 434 (2025), 113229  crossref
    3. Weichao Qian, Xue Yang, Yong Li, “Partial Frequency and Frequency Ratio in Multiscale KAM Formulism”, J Dyn Diff Equat, 2025  crossref
    4. Qi Li, Junxiang Xu, “Persistence of a class of degenerate hyperbolic lower dimensional invariant tori in Hamiltonian systems”, Journal of Differential Equations, 433 (2025), 113227  crossref
    5. Henk W. Broer, Heinz Hanßmann, Florian Wagener, “Parametrised KAM Theory, an Overview”, Regul. Chaot. Dyn., 2025  crossref
    6. Zhicheng Tong, Jiayin Du, Yong Li, “The KAM theorem on the modulus of continuity about parameters”, Sci. China Math., 67:3 (2024), 577  crossref
    7. Qi Li, Junxiang Xu, “A Formal KAM Theorem for Hamiltonian Systems and Its Application to Hyperbolic Lower Dimensional Invariant Tori”, Qual. Theory Dyn. Syst., 23:2 (2024)  crossref
    8. Xiaomei Yang, Junxiang Xu, “Persistence of the Non-twist Degenerate Lower Dimensional Invariant Torus in Reversible Systems”, Qual. Theory Dyn. Syst., 23:5 (2024)  crossref
    9. You Jiangong, “The KAM method for the spectral theory of quasi-periodic Schrödinger operators”, Sci. Sin.-Math., 54:6 (2024), 863  crossref
    10. Massimiliano Berti, “KAM for Vortex Patches”, Regul. Chaotic Dyn., 29:4 (2024), 654–676  mathnet  crossref
    11. Abed Bounemoura, Hamiltonian Systems, 2024, 67  crossref
    12. Roberto Feola, Jessica Elisa Massetti, “Non-Resonant Conditions for the Klein – Gordon Equation on the Circle”, Regul. Chaotic Dyn., 29:4 (2024), 541–564  mathnet  crossref
    13. Xiaomei Yang, Junxiang Xu, “Persistence of Multiscale Degenerate Invariant Tori in Reversible Systems with Degenerate Frequency Mapping”, Regul. Chaotic Dyn., 29:4 (2024), 605–619  mathnet  crossref
    14. Zhaowei Lou, “Reducibility of Linear Quasi-periodic Hamiltonian Derivative Wave Equations and Half-Wave Equations Under the Brjuno Conditions”, J Dyn Diff Equat, 2024  crossref
    15. Luca Franzoi, Nader Masmoudi, Riccardo Montalto, “Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow”, Arch Rational Mech Anal, 248:5 (2024)  crossref
    16. Zineb Hassainia, Taoufik Hmidi, Emeric Roulley, “Invariant KAM Tori Around Annular Vortex Patches for 2D Euler Equations”, Commun. Math. Phys., 405:11 (2024)  crossref
    17. Mei Na Gao, Jian Jun Liu, “A Degenerate KAM Theorem for Partial Differential Equations with Unbounded Perturbations”, Acta. Math. Sin.-English Ser., 40:11 (2024), 2719  crossref
    18. Jiayin Du, Yong Li, Hongkun Zhang, “Kolmogorov's theorem for degenerate Hamiltonian systems with Hölder continuous parameters”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, 1  crossref
    19. Zhichao Ma, Junxiang Xu, “Response Solutions for Completely Degenerate Oscillators Under Arbitrary Quasi-Periodic Perturbations”, Commun. Math. Phys., 402:1 (2023), 1  crossref
    20. Abed Bounemoura, Gerard Farré, “Positive Measure of Effective Quasi-Periodic Motion Near a Diophantine Torus”, Ann. Henri Poincaré, 24:9 (2023), 3289  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:275
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025