Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2003, Volume 8, Issue 2, Pages 213–224
DOI: https://doi.org/10.1070/RD2003v008n02ABEH000238
(Mi rcd778)
 

This article is cited in 8 scientific papers (total in 8 papers)

Geometry of Chen–Lee–Liu type derivative nonlinear Schrödinger flow

P. Guhaab

a S. N. Bose National Centre for Basic Sciences, JD Block, Sector-3, Salt Lake, Calcutta - 700098, INDIA
b Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150. USA
Citations (8)
Abstract: In this paper we derive the Lie algebraic formulation of the Chen–Lee–Liu (CLL) type generalization of derivative nonlinear Schrödinger equation. We also explore its Lie algebraic connection to another derivative nonlinear Schrödinger equation, the Kaup–Newell system. Finally it is shown that the CLL equation is related to the Dodd–Caudrey–Gibbon equation after averaging over the carrier oscillation.
Received: 21.09.2002
Bibliographic databases:
Document Type: Article
MSC: 37K10, 35Q58
Language: English
Citation: P. Guha, “Geometry of Chen–Lee–Liu type derivative nonlinear Schrödinger flow”, Regul. Chaotic Dyn., 8:2 (2003), 213–224
Citation in format AMSBIB
\Bibitem{Guh03}
\by P.~Guha
\paper Geometry of Chen–Lee–Liu type derivative nonlinear Schr\"{o}dinger flow
\jour Regul. Chaotic Dyn.
\yr 2003
\vol 8
\issue 2
\pages 213--224
\mathnet{http://mi.mathnet.ru/rcd778}
\crossref{https://doi.org/10.1070/RD2003v008n02ABEH000238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988861}
\zmath{https://zbmath.org/?q=an:1112.37325}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RCD.....8..213G}
Linking options:
  • https://www.mathnet.ru/eng/rcd778
  • https://www.mathnet.ru/eng/rcd/v8/i2/p213
  • This publication is cited in the following 8 articles:
    1. Muhammad Amin Sadiq Murad, Faraidun Kadir Hamasalh, Hajar Farhan Ismael, “Time-fractional Chen–Lee–Liu equation: Various optical solutions arising in optical fiber”, J. Nonlinear Optic. Phys. Mat., 33:06 (2024)  crossref
    2. Younis M., Younas U., Bilal M., Rehman S.U., Rizvi S.T.R., “Investigation of Optical Solitons With Chen-Lee-Liu Equation of Monomode Fibers By Five Free Parameters”, Indian J. Phys., 96:5 (2022), 1539–1546  crossref  isi  scopus
    3. Depelair B., Gambo B., Nsangou M., “Effects of Fractional Temporal Evolution on Chirped Soliton Solutions of the Chen-Lee-Liu Equation”, Phys. Scr., 96:10 (2021), 105215  crossref  isi  scopus
    4. Bilal M., Hu W., Ren J., “Different Wave Structures to the Chen-Lee-Liu Equation of Monomode Fibers and Its Modulation Instability Analysis”, Eur. Phys. J. Plus, 136:4 (2021), 385  crossref  isi  scopus
    5. Hussain A., Jhangeer A., Tahir S., Chu Yu.-M., Khan I., Nisar K.S., “Dynamical Behavior of Fractional Chen-Lee-Liu Equation in Optical Fibers With Beta Derivatives”, Results Phys., 18 (2020), 103208  crossref  isi  scopus
    6. Bansal A., Biswas A., Zhou Q., Arshed S., Alzahrani A.K., Belic M.R., “Optical Solitons With Chen-Lee-Liu Equation By Lie Symmetry”, Phys. Lett. A, 384:10 (2020), 126202  crossref  mathscinet  zmath  isi  scopus
    7. Kudryashov N.A., “General Solution of the Traveling Wave Reduction For the Perturbed Chen-Lee-Liu Equation”, Optik, 186 (2019), 339–349  crossref  isi  scopus
    8. Xiao Wei Sun, You De Wang, “Geometric Schrödinger-Airy flows on Kähler manifolds”, Acta. Math. Sin.-English Ser., 29:2 (2013), 209  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:109
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025