Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2003, Volume 8, Issue 2, Pages 191–200
DOI: https://doi.org/10.1070/RD2003v008n02ABEH000240
(Mi rcd776)
 

This article is cited in 5 scientific papers (total in 5 papers)

Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium

O. Yu. Koltsova

Dept. of Comput. Math. and Cybernetics, Nizhny Novgorod State University, 23 Gagarin Ave., 603600 Nizhny Novgorod, Russia
Citations (5)
Abstract: We consider a real analytic two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium $p$ (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such a system and show that in the case of nonresonance there are countable sets of multi-round homoclinic orbits to $p$. We also find families of periodic orbits, accumulating a the homoclinic orbits.
Received: 17.12.2002
Bibliographic databases:
Document Type: Article
MSC: 37J45, 37G99
Language: English
Citation: O. Yu. Koltsova, “Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium”, Regul. Chaotic Dyn., 8:2 (2003), 191–200
Citation in format AMSBIB
\Bibitem{Kol03}
\by O. Yu. Koltsova
\paper Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium
\jour Regul. Chaotic Dyn.
\yr 2003
\vol 8
\issue 2
\pages 191--200
\mathnet{http://mi.mathnet.ru/rcd776}
\crossref{https://doi.org/10.1070/RD2003v008n02ABEH000240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988859}
\zmath{https://zbmath.org/?q=an:1112.37319}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RCD.....8..191K}
Linking options:
  • https://www.mathnet.ru/eng/rcd776
  • https://www.mathnet.ru/eng/rcd/v8/i2/p191
  • This publication is cited in the following 5 articles:
    1. Vassili Gelfreich, Lev Lerman, “Separatrix Splitting at a Hamiltonian $0^2 i\omega$ Bifurcation”, Regul. Chaotic Dyn., 19:6 (2014), 635–655  mathnet  crossref  mathscinet  zmath
    2. Zhiqin Qiao, Yancong Xu, “Bifurcations of a Homoclinic Orbit to Saddle-Center in Reversible Systems”, Abstract and Applied Analysis, 2012 (2012), 1  crossref
    3. Ale Jan Homburg, Björn Sandstede, Handbook of Dynamical Systems, 3, 2010, 379  crossref
    4. E. Barrabés, J. M. Mondelo, M. Ollé, “Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP”, Celest Mech Dyn Astr, 105:1-3 (2009), 197  crossref
    5. O. Yu. Kol'tsova, “On the structure of an invertible system with a trajectory homoclinic to a saddle-center”, J Math Sci, 145:5 (2007), 5271  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:88
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025