Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 1, Pages 39–58
DOI: https://doi.org/10.1070/RD2005v010n01ABEH000299
(Mi rcd695)
 

This article is cited in 10 scientific papers (total in 10 papers)

Point vortices on a rotating sphere

F. Laurent-Polz

Institut Non Linéaire de Nice, Université de Nice, 1361 route des lucioles, 06560 Valbonne, France
Citations (10)
Abstract: We study the dynamics of $N$ point vortices on a rotating sphere. The Hamiltonian system becomes infinite dimensional due to the non-uniform background vorticity coming from the Coriolis force. We prove that a relative equilibrium formed of latitudinal rings of identical vortices for the non-rotating sphere persists to be a relative equilibrium when the sphere rotates. We study the nonlinear stability of a polygon of planar point vortices on a rotating plane in order to approximate the corresponding relative equilibrium on the rotating sphere when the ring is close to the pole. We then perform the same study for geostrophic vortices. To end, we compare our results to the observations on the southern hemisphere atmospheric circulation.
Keywords: point vortices, rotating sphere, relative equilibria, nonlinear stability, planar vortices, geostrophic vortices, Southern Hemisphere Circulation.
Received: 06.08.2004
Accepted: 09.12.2004
Bibliographic databases:
Document Type: Article
MSC: 70E55, 70H14, 70H33
Language: English
Citation: F. Laurent-Polz, “Point vortices on a rotating sphere”, Regul. Chaotic Dyn., 10:1 (2005), 39–58
Citation in format AMSBIB
\Bibitem{Lau05}
\by F.~Laurent-Polz
\paper Point vortices on a rotating sphere
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 1
\pages 39--58
\mathnet{http://mi.mathnet.ru/rcd695}
\crossref{https://doi.org/10.1070/RD2005v010n01ABEH000299}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136829}
\zmath{https://zbmath.org/?q=an:1120.76012}
Linking options:
  • https://www.mathnet.ru/eng/rcd695
  • https://www.mathnet.ru/eng/rcd/v10/i1/p39
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024