Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 1, Pages 33–38
DOI: https://doi.org/10.1070/RD2005v010n01ABEH000298
(Mi rcd694)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized dimensions of the golden-mean quasiperiodic orbit from renormalization-group functional equation

S. P. Kuznetsovab

a Saratov Division of Institute, of Radio-Engineering and Electronics, Russian Academy of Sciences, Zelenaya 38, Saratov, 410019, Russia
b Max-Planck-Institut für Physik Komplexer Systeme Nöthnitzer Straße 38, 01187 Dresden, Germany
Citations (2)
Abstract: A method is suggested for computation of the generalized dimensions for a fractal attractor associated with the quasiperiodic transition to chaos at the golden-mean rotation number. The approach is based on an eigenvalue problem formulated in terms of functional equations with coeficients expressed via the universal fixed-point function of Feigenbaum–Kadanoff–Shenker. The accuracy of the results is determined only by precision of representation of the universal function.
Keywords: circle map, golden mean, renormalization, dimension, generalized dimensions.
Received: 24.02.2005
Accepted: 10.03.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. P. Kuznetsov, “Generalized dimensions of the golden-mean quasiperiodic orbit from renormalization-group functional equation”, Regul. Chaotic Dyn., 10:1 (2005), 33–38
Citation in format AMSBIB
\Bibitem{Kuz05}
\by S. P. Kuznetsov
\paper Generalized dimensions of the golden-mean quasiperiodic orbit from renormalization-group functional equation
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 1
\pages 33--38
\mathnet{http://mi.mathnet.ru/rcd694}
\crossref{https://doi.org/10.1070/RD2005v010n01ABEH000298}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136828}
\zmath{https://zbmath.org/?q=an:1076.37028}
Linking options:
  • https://www.mathnet.ru/eng/rcd694
  • https://www.mathnet.ru/eng/rcd/v10/i1/p33
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024