Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 2, Pages 291–297
DOI: https://doi.org/10.1070/RD2006v011n02ABEH000352
(Mi rcd675)
 

On the 70th birthday of L.P. Shilnikov

Partial normal form near a saddle of a Hamiltonian system

L. M. Lerman

Institute for Applied Mathematics and Cybernetics, 10, Uljanova Str. 603005 Nizhny Novgorod, Russia
Abstract: For a smooth or real analytic Hamiltoniain vector field with two degrees of freedom we derive a local partial normal form of the vector field near a saddle equilibrium (two pairs of real eigenvalues $\pm \lambda_1$, $\pm \lambda_2$, $ \lambda_1 > \lambda_2 > 0$). Only a resonance $ \lambda_1 = n \lambda_2$ (if is present) influences on the normal form. This form allows one to get convenient almost linear estimates for solutions of the vector field using the Shilnikov's boundary value problem. Such technique is used when studying the orbit behavior near homoclinic orbits to saddle equilibria in a Hamiltonian system. The form obtained depends smoothly on parameters, if the vector field smoothly depends on parameters.
Keywords: Hamiltonian, saddle, normal form, symplectic transformation, invariant manifold.
Received: 08.11.2005
Accepted: 16.01.2006
Bibliographic databases:
Document Type: Article
MSC: 34C20, 34C14
Language: English
Citation: L. M. Lerman, “Partial normal form near a saddle of a Hamiltonian system”, Regul. Chaotic Dyn., 11:2 (2006), 291–297
Citation in format AMSBIB
\Bibitem{Ler06}
\by L. M. Lerman
\paper Partial normal form near a saddle of a Hamiltonian system
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 2
\pages 291--297
\mathnet{http://mi.mathnet.ru/rcd675}
\crossref{https://doi.org/10.1070/RD2006v011n02ABEH000352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245084}
\zmath{https://zbmath.org/?q=an:1164.34400}
Linking options:
  • https://www.mathnet.ru/eng/rcd675
  • https://www.mathnet.ru/eng/rcd/v11/i2/p291
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024