Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 2, Pages 191–212
DOI: https://doi.org/10.1070/RD2006v011n02ABEH000345
(Mi rcd668)
 

This article is cited in 53 scientific papers (total in 53 papers)

On the 70th birthday of L.P. Shilnikov

Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation

S. V. Gonchenkoa, J. D. Meissb, I. I. Ovsyannikovc

a Institute for Applied Mathematics and Cybernetics, 10, Uljanova Str. 603005 Nizhny Novgorod, Russia
b Applied Mathematics, University of Colorado, Boulder, CO 80309
c Radio and Physical Department, Nizhny Novgorod State University, 23 Gagarin str., 603000 Nizhny Novgorod, Russia
Citations (53)
Abstract: We study bifurcations of a three-dimensional diffeomorphism, $g_0$, that has a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers $(\lambda e^{i \varphi}, \lambda e^{-i \varphi}, \gamma)$, where $0< \lambda < 1 <|\gamma|$ and $|\lambda^2 \gamma|=1$. We show that in a three-parameter family, $g_{\varepsilon}$, of diffeomorphisms close to $g_0$, there exist infinitely many open regions near $\varepsilon = 0$ where the corresponding normal form of the first return map to a neighborhood of a homoclinic point is a three-dimensional Hénon-like map. This map possesses, in some parameter regions, a "wild-hyperbolic" Lorenz-type strange attractor. Thus, we show that this homoclinic bifurcation leads to a strange attractor. We also discuss the place that these three-dimensional Hénon maps occupy in the class of three-dimensional quadratic maps with constant Jacobian.
Keywords: saddle-focus fixed point, three-dimensional quadratic map, homoclinic bifurcation, strange attractor.
Received: 03.10.2005
Accepted: 12.11.2005
Bibliographic databases:
Document Type: Article
MSC: 37C05, 37G25, 37G35
Language: English
Citation: S. V. Gonchenko, J. D. Meiss, I. I. Ovsyannikov, “Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation”, Regul. Chaotic Dyn., 11:2 (2006), 191–212
Citation in format AMSBIB
\Bibitem{GonMeiOvs06}
\by S. V. Gonchenko, J.~D.~Meiss, I. I. Ovsyannikov
\paper Chaotic dynamics of three-dimensional H\'{e}non maps that originate from a homoclinic bifurcation
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 2
\pages 191--212
\mathnet{http://mi.mathnet.ru/rcd668}
\crossref{https://doi.org/10.1070/RD2006v011n02ABEH000345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245077}
\zmath{https://zbmath.org/?q=an:1164.37306}
Linking options:
  • https://www.mathnet.ru/eng/rcd668
  • https://www.mathnet.ru/eng/rcd/v11/i2/p191
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024