Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 2, Pages 181–190
DOI: https://doi.org/10.1070/RD2006v011n02ABEH000344
(Mi rcd667)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the 70th birthday of L.P. Shilnikov

Topological horseshoes for Arneodo–Coullet–Tresser maps

B.-S. Dua, M.-C. Lib, M. I. Malkinc

a Institute of Mathematics, Academia Sinica, Taipei 115, Taiwan
b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
c Department of Mathematics and Mechanics, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia
Citations (7)
Abstract: In this paper, we study the family of Arneodo–Coullet–Tresser maps $F (x, y, z) = (a x - b (y - z), b x + a (y - z), c x - d x k + e z)$ where $a, b, c, d, e$ are real parameters with $b d \neq 0$ and $k > 1$ is an integer. We find regions of parameters near anti-integrable limits and near singularities for which there exist hyperbolic invariant sets such that the restriction of $F$ to these sets is conjugate to the full shift on two or three symbols.
Keywords: topological horseshoe, full shift, polynomial maps, generalized Hénon maps, nonwandering set, inverse limit, topological entropy.
Received: 11.01.2006
Accepted: 17.02.2006
Bibliographic databases:
Document Type: Article
MSC: 37C25, 37C70
Language: English
Citation: B.-S. Du, M.-C. Li, M. I. Malkin, “Topological horseshoes for Arneodo–Coullet–Tresser maps”, Regul. Chaotic Dyn., 11:2 (2006), 181–190
Citation in format AMSBIB
\Bibitem{DuLiMal06}
\by B.-S. Du, M.-C.~Li, M. I. Malkin
\paper Topological horseshoes for Arneodo–Coullet–Tresser maps
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 2
\pages 181--190
\mathnet{http://mi.mathnet.ru/rcd667}
\crossref{https://doi.org/10.1070/RD2006v011n02ABEH000344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245076}
\zmath{https://zbmath.org/?q=an:1164.37310}
Linking options:
  • https://www.mathnet.ru/eng/rcd667
  • https://www.mathnet.ru/eng/rcd/v11/i2/p181
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024