Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 1, Pages 123–130
DOI: https://doi.org/10.1070/RD2006v011n01ABEH000338
(Mi rcd661)
 

This article is cited in 8 scientific papers (total in 8 papers)

Absolute choreographies of point vortices on a sphere

K.G. Tronin

Institute of Computer Science, Udmurt State University, 1 Universitetskaya str., 426034 Izhevsk, Russia
Citations (8)
Abstract: New periodic solutions to the problem of three and four identical vortices on a sphere are specified. These solutions correspond to choreographies of vortices on a plane. We also describe different methods to construct choreographies for an arbitrary number of vortices. The most interesting methods are based on splitting of the static symmetrical vortex configurations on a sphere.
Keywords: absolute choreographies, point vortices.
Received: 10.05.2005
Accepted: 30.07.2005
Bibliographic databases:
Document Type: Article
MSC: 37N05, 70F10
Language: English
Citation: K.G. Tronin, “Absolute choreographies of point vortices on a sphere”, Regul. Chaotic Dyn., 11:1 (2006), 123–130
Citation in format AMSBIB
\Bibitem{Tro06}
\by K.G. Tronin
\paper Absolute choreographies of point vortices on a sphere
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 1
\pages 123--130
\mathnet{http://mi.mathnet.ru/rcd661}
\crossref{https://doi.org/10.1070/RD2006v011n01ABEH000338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222436}
\zmath{https://zbmath.org/?q=an:1135.76317}
Linking options:
  • https://www.mathnet.ru/eng/rcd661
  • https://www.mathnet.ru/eng/rcd/v11/i1/p123
  • This publication is cited in the following 8 articles:
    1. E. M. Artemova, “Dinamika dvukh vikhrei na konechnom ploskom tsilindre”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:4 (2023), 642–658  mathnet  crossref
    2. Wang Q., “The N-Vortex Problem on a Riemann Sphere”, Commun. Math. Phys., 385:1 (2021), 565–593  crossref  mathscinet  isi  scopus
    3. Evgeny V. Vetchanin, Ivan S. Mamaev, “Dynamics of Two Point Vortices in an External Compressible Shear Flow”, Regul. Chaotic Dyn., 22:8 (2017), 893–908  mathnet  crossref
    4. Stefanella Boatto, Jair Koiller, Fields Institute Communications, 73, Geometry, Mechanics, and Dynamics, 2015, 185  crossref
    5. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 317  crossref
    6. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 1  crossref
    7. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 179  crossref
    8. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 37  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025