Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 1, Pages 103–122
DOI: https://doi.org/10.1070/RD2006v011n01ABEH000337
(Mi rcd660)
 

This article is cited in 13 scientific papers (total in 13 papers)

Two-dimensional conservative mechanical systems with quartic second integral

H. M. Yehia

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Citations (13)
Abstract: The method introduced in [20] was applied in [21] and [22] for constructing integrable conservative two dimentional mechanical systems whose second integral of motion is polynomial up to third degree in the velocities. In this paper we apply the same method for systemaic construction of mechanical systems with a quartic integral. As in our previous works, the configuration space is not assumed an Euclidean plane. This widens the range of applicability of the results to diverse mechanical systems such as rigid body dynamics and motion on two dimensional surfaces of positive, negative and variable curvature. Two new several-parameter integrable systems are obtained, which unify and generalize several previously known ones by modifying the configuration manifold and the potential of the forces acting on the system. Those systems are shown to include as special cases, integrable problems of motion in the Euclidean plane, the hyperbolic plane and different types of curved two dimensional manifolds. The results are applied to problems of rigid body dynamics. New integrable cases are obtained as special versions of one of the new systems, corresponding to different choices of the parameters. Those cases include new generalizations of the classical cases of Kovalevskaya, Chaplygin and Goryachev.
Keywords: integrable system, quartic integral, polynomial integral, second invariant.
Received: 14.02.2005
Accepted: 05.07.2005
Bibliographic databases:
Document Type: Article
MSC: 70H06, 70E40
Language: English
Citation: H. M. Yehia, “Two-dimensional conservative mechanical systems with quartic second integral”, Regul. Chaotic Dyn., 11:1 (2006), 103–122
Citation in format AMSBIB
\Bibitem{Yeh06}
\by H.~M.~Yehia
\paper Two-dimensional conservative mechanical systems with quartic second integral
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 1
\pages 103--122
\mathnet{http://mi.mathnet.ru/rcd660}
\crossref{https://doi.org/10.1070/RD2006v011n01ABEH000337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222435}
\zmath{https://zbmath.org/?q=an:1133.70327}
Linking options:
  • https://www.mathnet.ru/eng/rcd660
  • https://www.mathnet.ru/eng/rcd/v11/i1/p103
  • This publication is cited in the following 13 articles:
    1. Szuminski W. Maciejewski A.J., “Comment on “on the Integrability of 2D Hamiltonian Systems With Variable Gaussian Curvature” By a. a. Elmandouh”, Nonlinear Dyn., 104:2 (2021), 1443–1450  crossref  isi  scopus
    2. H. M. Yehia, A. M. Hussein, “New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals”, Rus. J. Nonlin. Dyn., 16:2 (2020), 211–242  mathnet  crossref
    3. Mnasri C., Elmandouh A.A., “Quartic Integral in Rigid Body-Gyrostat Dynamics”, Adv. Astron., 2020 (2020), 6651277  crossref  isi  scopus
    4. Szuminski W., “On Certain Integrable and Superintegrable Weight-Homogeneous Hamiltonian Systems”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 600–616  crossref  mathscinet  isi  scopus
    5. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    6. Wojciech Szumiński, “Integrability analysis of natural Hamiltonian systems in curved spaces”, Communications in Nonlinear Science and Numerical Simulation, 64 (2018), 246  crossref
    7. A. A. Elmandouh, “New integrable problems in rigid body dynamics with quartic integrals”, Acta Mech, 226:8 (2015), 2461  crossref
    8. A. A. Elmandouh, “New integrable problems in the dynamics of particle and rigid body”, Acta Mech, 226:11 (2015), 3749  crossref
    9. Hamad M Yehia, “Completely integrable 2D Lagrangian systems and related integrable geodesic flows on various manifolds”, J. Phys. A: Math. Theor., 46:32 (2013), 325203  crossref
    10. H M Yehia, A A Elmandouh, “A new integrable problem with a quartic integral in the dynamics of a rigid body”, J. Phys. A: Math. Theor., 46:14 (2013), 142001  crossref
    11. Hamad M Yehia, “A new 2D integrable system with a quartic second invariant”, J. Phys. A: Math. Theor., 45:39 (2012), 395209  crossref
    12. H M Yehia, A A Elmandouh, “New conditional integrable cases of motion of a rigid body with Kovalevskaya's configuration”, J. Phys. A: Math. Theor., 44:1 (2011), 012001  crossref
    13. H M Yehia, “The master integrable two-dimensional system with a quartic second integral”, J. Phys. A: Math. Gen., 39:20 (2006), 5807  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025