Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 1, Pages 18–23
DOI: https://doi.org/10.1134/S1560354716010020
(Mi rcd65)
 

This article is cited in 2 scientific papers (total in 2 papers)

Local Normal Forms of Smooth Weakly Hyperbolic Integrable Systems

Kai Jiang

Institut de Mathématiques de Jussieu — Paris Rive Gauche, Université Paris 7 7050 Bâtiment Sophie Germain, Case 7012, 75205 Paris CEDEX 13, France
Citations (2)
References:
Abstract: In the smooth $(C^\infty)$ category, a completely integrable system near a nondegenerate singularity is geometrically linearizable if the action generated by the vector fields is weakly hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate singularity are real.
Keywords: completely integrable systems, geometric linearization, nondegenerate singularity, weak hyperbolicity.
Received: 02.04.2015
Accepted: 13.08.2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Kai Jiang, “Local Normal Forms of Smooth Weakly Hyperbolic Integrable Systems”, Regul. Chaotic Dyn., 21:1 (2016), 18–23
Citation in format AMSBIB
\Bibitem{Jia16}
\by Kai Jiang
\paper Local Normal Forms of Smooth Weakly Hyperbolic Integrable Systems
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 18--23
\mathnet{http://mi.mathnet.ru/rcd65}
\crossref{https://doi.org/10.1134/S1560354716010020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3457074}
\zmath{https://zbmath.org/?q=an:06580140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373028300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957591231}
Linking options:
  • https://www.mathnet.ru/eng/rcd65
  • https://www.mathnet.ru/eng/rcd/v21/i1/p18
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:221
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024