Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 1, Pages 1–17
DOI: https://doi.org/10.1134/S1560354716010019
(Mi rcd64)
 

This article is cited in 6 scientific papers (total in 6 papers)

Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra $so(4)$

Rasoul Akbarzadeh

Department of Fundamental Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Maragheh Road, Tabriz, Iran
Citations (6)
References:
Abstract: In 2001, A. V. Borisov, I. S. Mamaev, and V. V. Sokolov discovered a new integrable case on the Lie algebra $so(4)$. This is a Hamiltonian system with two degrees of freedom, where both the Hamiltonian and the additional integral are homogenous polynomials of degrees 2 and 4, respectively. In this paper, the topology of isoenergy surfaces for the integrable case under consideration on the Lie algebra $so(4)$ and the critical points of the Hamiltonian under consideration for different values of parameters are described and the bifurcation values of the Hamiltonian are constructed. Also, a description of bifurcation complexes and typical forms of the bifurcation diagram of the system are presented.
Keywords: topology, integrable Hamiltonian systems, isoenergy surfaces, critical set, bifurcation diagram, bifurcation complex, periodic trajectory.
Received: 17.09.2015
Accepted: 20.12.2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Rasoul Akbarzadeh, “Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra $so(4)$”, Regul. Chaotic Dyn., 21:1 (2016), 1–17
Citation in format AMSBIB
\Bibitem{Akb16}
\by Rasoul Akbarzadeh
\paper Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra $so(4)$
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru/rcd64}
\crossref{https://doi.org/10.1134/S1560354716010019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3457073}
\zmath{https://zbmath.org/?q=an:06580139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373028300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957586219}
Linking options:
  • https://www.mathnet.ru/eng/rcd64
  • https://www.mathnet.ru/eng/rcd/v21/i1/p1
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:349
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024