Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 2, Pages 127–152
DOI: https://doi.org/10.1134/S1560354707020025
(Mi rcd617)
 

This article is cited in 52 scientific papers (total in 52 papers)

Rubber Rolling over a Sphere

J. Koillera, K. Ehlersb

a Fundação Getulio Vargas, Praia de Botafogo 190, Rio de Janeiro, RJ 22250-040, Brazil
b Truckee Meadows Community College, 7000 Dandini Boulevard, Reno, NV 89512-3999, USA
Citations (52)
Abstract: "Rubber" coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by "marble" coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2-3-5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group G2). The 2-3-5 nonholonomic geometries are classified in a companion paper [2] via Cartan's equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4-8] with SO(3) symmetry group, total space Q=SO(3)×S2 and base S2, that can be reduced to an almost Hamiltonian system in TS2 with a non-closed 2-form ωNH. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius b (unequal moments of inertia Ij but with center of gravity at the geometric center), rubber rolling over another sphere of radius a. In this example ωNH is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power p=1/2(b/a1). Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for p=1/2 (ball over a plane). They have found another integrable case [11] corresponding to p=3/2 (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different Ij are known.
Keywords: nonholonomic mechanics, reduction, Chaplygin systems.
Received: 02.12.2006
Accepted: 18.02.2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Koiller, K. Ehlers, “Rubber Rolling over a Sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152
Citation in format AMSBIB
\Bibitem{KoiEhl07}
\by J. Koiller, K. Ehlers
\paper Rubber Rolling over a Sphere
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 2
\pages 127--152
\mathnet{http://mi.mathnet.ru/rcd617}
\crossref{https://doi.org/10.1134/S1560354707020025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350302}
\zmath{https://zbmath.org/?q=an:1229.37089}
Linking options:
  • https://www.mathnet.ru/eng/rcd617
  • https://www.mathnet.ru/eng/rcd/v12/i2/p127
  • This publication is cited in the following 52 articles:
    1. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
    2. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    3. Naprstek J. Fischer C., “Trajectories of a Ball Moving Inside a Spherical Cavity Using First Integrals of the Governing Nonlinear System”, Nonlinear Dyn., 106:3 (2021), 1591–1625  crossref  isi  scopus
    4. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis”, Theor. Appl. Mech., 47:2 (2020), 257–287  mathnet  crossref
    5. Garcia-Naranjo L.C. Marrero J.C., “the Geometry of Nonholonomic Chaplygin Systems Revisited”, Nonlinearity, 33:3 (2020), 1297–1341  crossref  mathscinet  zmath  isi  scopus
    6. B. Gajić, B. Jovanović, “Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$”, Rus. J. Nonlin. Dyn., 15:4 (2019), 457–475  mathnet  crossref  elib
    7. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness”, Regul. Chaotic Dyn., 24:3 (2019), 329–352  mathnet  crossref
    8. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
    9. Luis C. García-Naranjo, “Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88  mathnet  crossref
    10. Božidar Jovanović, “Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108  mathnet  crossref
    11. Garcia-Naranjo L.C., “Generalisation of Chaplygin'S Reducing Multiplier Theorem With An Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A-Math. Theor., 52:20 (2019), 205203  crossref  mathscinet  isi  scopus
    12. Gajic B. Jovanovic B., “Nonholonomic Connections, Time Reparametrizations, and Integrability of the Rolling Ball Over a Sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
    13. Borisov A.V. Kilin A.A. Pivovarova E.N., “Speedup of the Chaplygin TOP By Means of Rotors”, Dokl. Phys., 64:3 (2019), 120–124  mathnet  crossref  isi  scopus
    14. Patrick Grosch, Federico Thomas, Parallel Robots: Theory and Applications, Parallel Robots With Unconventional Joints, 2019, 1  crossref
    15. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane”, Regul. Chaotic Dyn., 23:6 (2018), 665–684  mathnet  crossref  mathscinet
    16. Božidar Jovanović, “Rolling balls over spheres in $ \newcommand{\m}{\mathfrak m} {\mathbb{R}^n}$”, Nonlinearity, 31:9 (2018), 4006  crossref
    17. A. A. Kilin, E. N. Pivovarova, “Chaplygin Top with a Periodic Gyrostatic Moment”, Russ. J. Math. Phys., 25:4 (2018), 509  crossref
    18. Erlend Grong, “Submersions, Hamiltonian Systems, and Optimal Solutions to the Rolling Manifolds Problem”, SIAM J. Control Optim., 54:2 (2016), 536  crossref
    19. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    20. A. A. Kilin, Yu. L. Karavaev, “Eksperimentalnye issledovaniya dinamiki sfericheskogo robota kombinirovannogo tipa”, Nelineinaya dinam., 11:4 (2015), 721–734  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:123
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025