Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 1, Pages 39–55
DOI: https://doi.org/10.1134/S1560354707010042
(Mi rcd610)
 

This article is cited in 17 scientific papers (total in 17 papers)

Euler Configurations and Quasi-Polynomial Systems

A. Albouya, Y. Fub

a Astronomie et Systémes Dynamiques, IMCCE, 77, av. Denfert-Rochereau, Paris 75014, France
b Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008, P. R. China
Citations (17)
Abstract: Consider the problem of three point vortices (also called Helmholtz' vortices) on a plane, with arbitrarily given vorticities. The interaction between vortices is proportional to 1/r1/r, where rr is the distance between two vortices. The problem has 2 equilateral and at most 3 collinear normalized relative equilibria. This 3 is the optimal upper bound. Our main result is that the above standard statements remain unchanged if we consider an interaction proportional to rbrb, for any b<0b<0. For 0<b<10<b<1, the optimal upper bound becomes 5. For positive vorticities and any b<1, there are exactly 3 collinear normalized relative equilibria. The case b=2b=2 of this last statement is the well-known theorem due to Euler: in the Newtonian 3-body problem, for any choice of the 3 masses, there are 3 Euler configurations (also known as the 3 Euler points). These small upper bounds strengthen the belief of Kushnirenko and Khovanskii [18]: real varieties defined by simple systems should have a simple topology. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework.
Keywords: relative equilibria, point vortex, real solutions.
Received: 12.07.2006
Accepted: 14.09.2006
Bibliographic databases:
Document Type: Article
MSC: 70F07, 74G05, 26B25
Language: English
Citation: A. Albouy, Y. Fu, “Euler Configurations and Quasi-Polynomial Systems”, Regul. Chaotic Dyn., 12:1 (2007), 39–55
Citation in format AMSBIB
\Bibitem{AlbFu07}
\by A. Albouy, Y.~Fu
\paper Euler Configurations and Quasi-Polynomial Systems
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 1
\pages 39--55
\mathnet{http://mi.mathnet.ru/rcd610}
\crossref{https://doi.org/10.1134/S1560354707010042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350295}
\zmath{https://zbmath.org/?q=an:1229.70032}
Linking options:
  • https://www.mathnet.ru/eng/rcd610
  • https://www.mathnet.ru/eng/rcd/v12/i1/p39
  • This publication is cited in the following 17 articles:
    1. Ya-Lun Tsai, “A Class of Symmetric Dziobek Configurations in Restricted Problems for Homogeneous Force Laws”, J Dyn Diff Equat, 2023  crossref
    2. Vladimir Zolotov, “Upper bounds for the number of isolated critical points via the Thom–Milnor theorem”, Anal.Math.Phys., 13:5 (2023)  crossref
    3. Santoprete M., “On the Uniqueness of Co-Circular Four Body Central Configurations”, Arch. Ration. Mech. Anal., 240:2 (2021), 971–985  crossref  mathscinet  isi  scopus
    4. Santoprete M., “On the Uniqueness of Trapezoidal Four-Body Central Configurations”, Nonlinearity, 34:1 (2021), 424–437  crossref  mathscinet  isi  scopus
    5. Montserrat Corbera, Jaume Llibre, Pengfei Yuan, “On the Convex Central Configurations of the Symmetric $(l+2)$-body Problem”, Regul. Chaotic Dyn., 25:3 (2020), 250–272  mathnet  crossref  mathscinet
    6. Pengfei Yuan, Jaume Llibre, “Tangential Trapezoid Central Configurations”, Regul. Chaotic Dyn., 25:6 (2020), 651–661  mathnet  crossref  mathscinet
    7. Llibre J., Yuan P., “Bicentric Quadrilateral Central Configurations”, Appl. Math. Comput., 362 (2019), UNSP 124507  crossref  mathscinet  isi  scopus
    8. Hampton M., “Planar N-Body Central Configurations With a Homogeneous Potential”, Celest. Mech. Dyn. Astron., 131:5 (2019), 20  crossref  mathscinet  isi  scopus
    9. Corbera M., Cors J.M., Llibre J., Perez-Chavela E., “Trapezoid Central Configurations”, Appl. Math. Comput., 346 (2019), 127–142  crossref  mathscinet  zmath  isi  scopus
    10. Alvarez-Ramirez M., Llibre J., “Hjelmslev Quadrilateral Central Configurations”, Phys. Lett. A, 383:2-3 (2019), 103–109  crossref  mathscinet  zmath  isi  scopus
    11. Jaume Llibre, “On the central configurations of the n-body problem”, Applied Mathematics and Nonlinear Sciences, 2:2 (2017), 509  crossref
    12. Martha Alvarez-Ramírez, Montserrat Corbera, Jaume Llibre, “On the central configurations in the spatial 5-body problem with four equal masses”, Celest Mech Dyn Astr, 124:4 (2016), 433  crossref
    13. Renato Iturriaga, Ezequiel Maderna, “Generic uniqueness of the minimal Moulton central configuration”, Celest Mech Dyn Astr, 123:3 (2015), 351  crossref
    14. Montserrat Corbera, Jaume Llibre, “Central configurations of the 4-body problem with masses m1=m2>m3=m4=m>0 and m small”, Applied Mathematics and Computation, 246 (2014), 121  crossref
    15. ZhengDong Li, YanNing Fu, “The optimal upper bound of the number of generalized Euler configurations”, Sci. China Math., 53:2 (2010), 401  crossref
    16. Alain Albouy, Yanning Fu, Shanzhong Sun, “Symmetry of planar four-body convex central configurations”, Proc. R. Soc. A., 464:2093 (2008), 1355  crossref
    17. Ernesto Perez-Chavela, Manuele Santoprete, “Convex Four-Body Central Configurations with Some Equal Masses”, Arch Rational Mech Anal, 185:3 (2007), 481  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:110
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025