Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 1, Pages 27–38
DOI: https://doi.org/10.1134/S1560354707010030
(Mi rcd609)
 

This article is cited in 13 scientific papers (total in 13 papers)

Symmetry of the Restricted 4+1 Body Problem with Equal Masses

C. Vidala, A. A. Santosb

a Departamento de Matemática, Facultad de Ciencias, Universidad del Bío Bío, Casilla 5-C, Concepción, VIII-Región, Chile
b Departamento de Matemática, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão-SE, CEP. 49100-000, Brazil
Citations (13)
Abstract: We consider the problem of symmetry of the central configurations in the restricted 4+1 body problem when the four positive masses are equal and disposed in symmetric configurations, namely, on a line, at the vertices of a square, at the vertices of a equilateral triangle with a mass at the barycenter, and finally, at the vertices of a regular tetrahedron [1-3]. In these situations, we show that in order to form a non collinear central configuration of the restricted 4+1 body problem, the null mass must be on an axis of symmetry. In our approach, we will use as the main tool the quadratic forms introduced by A. Albouy and A. Chenciner [4]. Our arguments are general enough, so that we can consider the generalized Newtonian potential and even the logarithmic case. To get our results, we identify some properties of the Newtonian potential (in fact, of the function φ(s)=skφ(s)=sk, with k<0k<0) which are crucial in the proof of the symmetry.
Keywords: nn-body problem, central configurations, symmetry.
Received: 02.02.2006
Accepted: 11.11.2006
Bibliographic databases:
Document Type: Article
MSC: 37C75, 34D20, 34A25
Language: English
Citation: C. Vidal, A. A. Santos, “Symmetry of the Restricted 4+1 Body Problem with Equal Masses”, Regul. Chaotic Dyn., 12:1 (2007), 27–38
Citation in format AMSBIB
\Bibitem{VidSan07}
\by C.~Vidal, A. A. Santos
\paper Symmetry of the Restricted 4+1 Body Problem with Equal Masses
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 1
\pages 27--38
\mathnet{http://mi.mathnet.ru/rcd609}
\crossref{https://doi.org/10.1134/S1560354707010030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350294}
\zmath{https://zbmath.org/?q=an:1229.37017}
Linking options:
  • https://www.mathnet.ru/eng/rcd609
  • https://www.mathnet.ru/eng/rcd/v12/i1/p27
  • This publication is cited in the following 13 articles:
    1. M. Alvarez-Ramírez, J. Lino Cornelio, Josep M. Cors, “Convex symmetric rectangular pentagon central configurations”, Communications in Nonlinear Science and Numerical Simulation, 138 (2024), 108250  crossref
    2. Ya-Lun Tsai, “A Class of Symmetric Dziobek Configurations in Restricted Problems for Homogeneous Force Laws”, J Dyn Diff Equat, 2023  crossref
    3. Jean Fernandes Barros, “Bifurcations and enumeration of central configurations of some planar restricted problems”, Celest Mech Dyn Astron, 135:2 (2023)  crossref
    4. M. Corbera, J. Llibre, C. Valls, “Planar central configurations of some restricted (4 + 1)-body problems”, Journal of Mathematical Physics, 63:12 (2022)  crossref
    5. Fernandes A.C., Mello L.F., Vidal C., “on the Uniqueness of the Isosceles Trapezoidal Central Configuration in the 4-Body Problem For Power-Law Potentials”, Nonlinearity, 33:1 (2020), 388–407  crossref  mathscinet  zmath  isi  scopus
    6. Hampton M., “Planar N-Body Central Configurations With a Homogeneous Potential”, Celest. Mech. Dyn. Astron., 131:5 (2019), 20  crossref  mathscinet  isi  scopus
    7. Antonio Carlos Fernandes, Braulio Augusto Garcia, Jaume Llibre, Luis Fernando Mello, “New central configurations of the (n+1)-body problem”, Journal of Geometry and Physics, 124 (2018), 199  crossref
    8. Alan Almeida Santos, Marcelo Marchesin, Ernesto Pérez-Chavela, Claudio Vidal, “Continuation and bifurcations of concave central configurations in the four and five body-problems for homogeneous force laws”, Journal of Mathematical Analysis and Applications, 446:2 (2017), 1743  crossref
    9. Martha Alvarez-Ramírez, Montserrat Corbera, Jaume Llibre, “On the central configurations in the spatial 5-body problem with four equal masses”, Celest Mech Dyn Astr, 124:4 (2016), 433  crossref
    10. Martha Alvarez-Ramírez, Alan Almeida Santos, Claudio Vidal, “On Co-Circular Central Configurations in the Four and Five Body-Problems for Homogeneous Force Law”, J Dyn Diff Equat, 25:2 (2013), 269  crossref
    11. Ya-lun Tsai, “Dziobek configurations of the restricted (N + 1)-body problem with equal masses”, Journal of Mathematical Physics, 53:7 (2012)  crossref
    12. Maité Kulesza, Marcelo Marchesin, Claudio Vidal, “Restricted rhomboidal five-body problem”, J. Phys. A: Math. Theor., 44:48 (2011), 485204  crossref
    13. Alain Albouy, Yanning Fu, “Relative equilibria of four identical satellites”, Proc. R. Soc. A., 465:2109 (2009), 2633  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025