Processing math: 50%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 6, Pages 557–571
DOI: https://doi.org/10.1134/S1560354708060063
(Mi rcd601)
 

This article is cited in 51 scientific papers (total in 51 papers)

JÜRGEN MOSER – 80

Chaplygin ball over a fixed sphere: an explicit integration

A.V. Borisova, Yu.N. Fedorovb, I.S. Mamaeva

a Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Department de Matemática Aplicada I, Universitat Politecnica de Catalunya
Citations (51)
Abstract: We consider a nonholonomic system describing the rolling of a dynamically nonsymmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel–Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconic) coordinates on the Poisson sphere, which can be useful in other integrable problems. Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time.
Keywords: Chaplygin ball, explicit integration, nonholonomic mechanics.
Received: 21.07.2008
Accepted: 07.10.2008
Bibliographic databases:
Document Type: Personalia
MSC: 37J60, 37J35, 70H45
Language: English
Citation: A.V. Borisov, Yu.N. Fedorov, I.S. Mamaev, “Chaplygin ball over a fixed sphere: an explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571
Citation in format AMSBIB
\Bibitem{BorFedMam08}
\by A.V. Borisov, Yu.N. Fedorov, I.S. Mamaev
\paper Chaplygin ball over a fixed sphere: an explicit integration
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 6
\pages 557--571
\mathnet{http://mi.mathnet.ru/rcd601}
\crossref{https://doi.org/10.1134/S1560354708060063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465724}
\zmath{https://zbmath.org/?q=an:1229.37080}
Linking options:
  • https://www.mathnet.ru/eng/rcd601
  • https://www.mathnet.ru/eng/rcd/v13/i6/p557
  • This publication is cited in the following 51 articles:
    1. Ismail Hakki Sagsoz, Turgay Eray, “Design and Kinematics of Mechanically Coupled Two Identical Spherical Robots”, J Intell Robot Syst, 108:2 (2023)  crossref
    2. Jiří Náprstek, Cyril Fischer, Vibration Control of Structures, 2023  crossref
    3. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    4. Evgeniya A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106920–15  mathnet  crossref  isi
    5. Aleksandar Obradović, Zoran Mitrović, Slaviša Šalinić, “On the problem of a heavy homogeneous ball rolling without slipping over a fixed surface of revolution”, Applied Mathematics and Computation, 420 (2022), 126906  crossref
    6. Naprstek J. Fischer C., “Trajectories of a Ball Moving Inside a Spherical Cavity Using First Integrals of the Governing Nonlinear System”, Nonlinear Dyn., 106:3 (2021), 1591–1625  crossref  isi  scopus
    7. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis”, Theor. Appl. Mech., 47:2 (2020), 257–287  mathnet  crossref
    8. B. Gajić, B. Jovanović, “Two Integrable Cases of a Ball Rolling over a Sphere in Rn”, Rus. J. Nonlin. Dyn., 15:4 (2019), 457–475  mathnet  crossref  elib
    9. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    10. Moazami S. Zargarzadeh H. Palanki S., “Kinematics of Spherical Robots Rolling Over 3D Terrains”, Complexity, 2019 (2019), 7543969  crossref  isi  scopus
    11. Gajic B. Jovanovic B., “Nonholonomic Connections, Time Reparametrizations, and Integrability of the Rolling Ball Over a Sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
    12. Ngoc Tam Lam, Ian Howard, Lei Cui, 2019 4th International Conference on Control, Robotics and Cybernetics (CRC), 2019, 145  crossref
    13. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane”, Regul. Chaotic Dyn., 23:6 (2018), 665–684  mathnet  crossref  mathscinet
    14. Alexander A. Kilin, Elena N. Pivovarova, “Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 23:7-8 (2018), 887–907  mathnet  crossref  mathscinet
    15. Božidar Jovanović, “Rolling balls over spheres in \newcommand{\m}{\mathfrak m} {\mathbb{R}^n}”, Nonlinearity, 31:9 (2018), 4006  crossref
    16. Evgeny V. Vetchanin, Ivan S. Mamaev, “Dynamics of Two Point Vortices in an External Compressible Shear Flow”, Regul. Chaotic Dyn., 22:8 (2017), 893–908  mathnet  crossref
    17. Sergei V. Sokolov, Pavel E. Ryabov, “Bifurcation Analysis of the Dynamics of Two Vortices in a Bose – Einstein Condensate. The Case of Intensities of Opposite Signs”, Regul. Chaotic Dyn., 22:8 (2017), 976–995  mathnet  crossref
    18. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. A. V. Borisov, A. O. Kazakov, E. N. Pivovarova, “Regulyarnaya i khaoticheskaya dinamika v «rezinovoi» modeli volchka Chaplygina”, Nelineinaya dinam., 13:2 (2017), 277–297  mathnet  crossref  elib
    20. Alexey V. Borisov, Ivan S. Mamaev, “Adiabatic Invariants, Diffusion and Acceleration in Rigid Body Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 232–248  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:147
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025