Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 6, Pages 543–556
DOI: https://doi.org/10.1134/S1560354708060051
(Mi rcd600)
 

This article is cited in 26 scientific papers (total in 26 papers)

JÜRGEN MOSER – 80

Integrable Lotka–Volterra systems

O.I. Bogoyavlenskijab

a V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Department of Mathematics, Queen’s University, Kingston, K7L 3N6, Canada
Citations (26)
Abstract: Infinite- and finite-dimensional lattices of Lotka–Volterra type are derived that possess Lax representations and have large families of first integrals. The obtained systems are Hamiltonian and contain perturbations of Volterra lattice. Examples of Liouville-integrable 4-dimensional Hamiltonian Lotka-Volterra systems are presented. Several 5-dimensional Lotka–Volterra systems are found that have Lax representations and are Liouville-integrable on constant levels of Casimir functions.
Keywords: Lax representation, Hamiltonian structures, Casimir functions, Riemannian surfaces, Lotka–Volterra systems, integrable lattices.
Received: 06.09.2008
Accepted: 28.10.2008
Bibliographic databases:
Document Type: Personalia
MSC: 58F05
Language: English
Citation: O.I. Bogoyavlenskij, “Integrable Lotka–Volterra systems”, Regul. Chaotic Dyn., 13:6 (2008), 543–556
Citation in format AMSBIB
\Bibitem{Bog08}
\by O.I. Bogoyavlenskij
\paper Integrable Lotka–Volterra systems
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 6
\pages 543--556
\mathnet{http://mi.mathnet.ru/rcd600}
\crossref{https://doi.org/10.1134/S1560354708060051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465723}
\zmath{https://zbmath.org/?q=an:1229.37097}
Linking options:
  • https://www.mathnet.ru/eng/rcd600
  • https://www.mathnet.ru/eng/rcd/v13/i6/p543
  • This publication is cited in the following 26 articles:
    1. Atsushi Nobe, “Exact solutions to SIR epidemic models via integrable discretization”, Journal of Mathematical Physics, 65:7 (2024)  crossref
    2. Peter H. van der Kamp, G. R. W. Quispel, David I. McLaren, “Trees and Superintegrable Lotka–Volterra Families”, Math Phys Anal Geom, 27:4 (2024)  crossref
    3. Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel, “On a Quadratic Poisson Algebra and Integrable Lotka – Volterra Systems with Solutions in Terms of Lambert's $W$ Function”, Regul. Chaot. Dyn., 2024  crossref
    4. G R W Quispel, Benjamin K Tapley, D I McLaren, Peter H van der Kamp, “Linear Darboux polynomials for Lotka–Volterra systems, trees and superintegrable families”, J. Phys. A: Math. Theor., 56:31 (2023), 315201  crossref
    5. Wentong Du, Min Xiao, Jie Ding, Yi Yao, Zhengxin Wang, Xinsong Yang, “Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases”, Mathematics and Computers in Simulation, 205 (2023), 414  crossref
    6. C A Evripidou, P Kassotakis, P Vanhaecke, “Morphisms and automorphisms of skew-symmetric Lotka–Volterra systems*”, J. Phys. A: Math. Theor., 55:32 (2022), 325201  crossref
    7. Lazureanu C., “Integrable Deformations and Dynamical Properties of Systems With Constant Population”, Mathematics, 9:12 (2021), 1378  crossref  isi  scopus
    8. Lazureanu C., “On the Integrable Deformations of the Maximally Superintegrable Systems”, Symmetry-Basel, 13:6 (2021), 1000  crossref  isi  scopus
    9. Bountis T., Zhunussova Zh., Dosmagulova K., Kanellopoulos G., “Integrable and Non-Integrable Lotka-Volterra Systems”, Phys. Lett. A, 402 (2021), 127360  crossref  mathscinet  isi  scopus
    10. van der Kamp P.H., MClaren D.I., Quispel G.R.W., “Homogeneous Darboux Polynomials and Generalising Integrable Ode Systems”, J. Comput. Dynam., 8:1 (2021), 1–8  crossref  mathscinet  isi  scopus
    11. Charalampos A. Evripidou, Peter H. van der Kamp, Cheng Zhang, “Dressing the Dressing Chain”, SIGMA, 14 (2018), 059, 14 pp.  mathnet  crossref
    12. C.A. Evripidou, P. Kassotakis, P. Vanhaecke, “Integrable Deformations of the Bogoyavlenskij–Itoh Lotka–Volterra Systems”, Regul. Chaotic Dyn., 22:6 (2017), 721–739  mathnet  crossref  mathscinet
    13. P. A. Damianou, C. A. Evripidou, P. Kassotakis, P. Vanhaecke, “Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems”, Journal of Mathematical Physics, 58:3 (2017)  crossref
    14. T E Kouloukas, G R W Quispel, P Vanhaecke, “Liouville integrability and superintegrability of a generalized Lotka–Volterra system and its Kahan discretization”, J. Phys. A: Math. Theor., 49:22 (2016), 225201  crossref
    15. Tassos Bountis, Pol Vanhaecke, “Lotka–Volterra systems satisfying a strong Painlevé property”, Physics Letters A, 380:47 (2016), 3977  crossref
    16. Pantelis A. Damianou, Hervé Sabourin, Pol Vanhaecke, “Intermediate Toda Systems”, Regul. Chaotic Dyn., 20:3 (2015), 277–292  mathnet  crossref  mathscinet  zmath  adsnasa
    17. S.A. Charalambides, P.A. Damianou, C.A. Evripidou, “On generalized Volterra systems”, Journal of Geometry and Physics, 87 (2015), 86  crossref
    18. Stelios A Charalambides, Pantelis A Damianou, Charalambos A Evripidou, “Generalized Lotka—Volterra systems connected with simple Lie algebras”, J. Phys.: Conf. Ser., 621 (2015), 012004  crossref
    19. S. A. Charalambides, P. A. Damianou, C. A. Evripidou, Springer Proceedings in Mathematics & Statistics, 111, Lie Theory and Its Applications in Physics, 2014, 323  crossref
    20. Pantelis A. Damianou, Fani Petalidou, “On the liouville intergrability of Lotka-Volterra systems”, Front. Phys., 2 (2014)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025