Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 4, Pages 250–256
DOI: https://doi.org/10.1134/S1560354708040023
(Mi rcd576)
 

This article is cited in 2 scientific papers (total in 2 papers)

Nonholonomic mechanics

Hirota–Kimura Type Discretization of the Classical Nonholonomic Suslov Problem

V. Dragovićab, B. Gajića

a Mathematical Institute SANU, Kneza Mihaila 36, Belgrade, Serbia
b Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa, Portugal
Citations (2)
Abstract: We constructed Hirota–Kimura type discretization of the classical nonholonomic Suslov problem of motion of rigid body fixed at a point. We found a first integral proving integrability. Also, we have shown that discrete trajectories asymptotically tend to a line of discrete analogies of so-called steady-state rotations. The last property completely corresponds to well-known property of the continuous Suslov case. The explicite formulae for solutions are given. In $n$-dimensional case we give discrete equations.
Keywords: Hirota–Kimura type discretization, nonholonomic mechanics, Suslov problem, rigid body.
Received: 26.06.2008
Accepted: 14.07.2008
Bibliographic databases:
Document Type: Personalia
MSC: 37J60, 70H06
Language: English
Citation: V. Dragović, B. Gajić, “Hirota–Kimura Type Discretization of the Classical Nonholonomic Suslov Problem”, Regul. Chaotic Dyn., 13:4 (2008), 250–256
Citation in format AMSBIB
\Bibitem{DraGaj08}
\by V. Dragovi\'c, B. Gaji\'c
\paper Hirota–Kimura Type Discretization of the Classical Nonholonomic Suslov Problem
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 4
\pages 250--256
\mathnet{http://mi.mathnet.ru/rcd576}
\crossref{https://doi.org/10.1134/S1560354708040023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2456921}
\zmath{https://zbmath.org/?q=an:1229.37084}
Linking options:
  • https://www.mathnet.ru/eng/rcd576
  • https://www.mathnet.ru/eng/rcd/v13/i4/p250
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024