Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 551–563
DOI: https://doi.org/10.1134/S1560354710040106
(Mi rcd515)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the 60th birthday of professor V.V. Kozlov

Partial integrability of Hamiltonian systems with homogeneous potential

A. J. Maciejewskia, M. Przybylskabc

a J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65–417 Zielona Góra, Poland
b Toruń Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87–100 Toruń, Poland
c Institute of Physics, University of Zielona Góra, Licealna 9, PL-65–417 Zielona Góra, Poland
Citations (7)
Abstract: In this paper we consider systems with $n$ degrees of freedom given by the natural Hamiltonian function of the form

\begin{equation*} H=\frac{1}{2}{\boldsymbol p}^T{\boldsymbol M}{\boldsymbol p} +V({\boldsymbol q}), \end{equation*}

where ${\boldsymbol q}=(q_1, \ldots, q_n)\in\mathbb C^n$, ${\boldsymbol p}=(p_1, \ldots, p_n)\in\mathbb C^n$, are the canonical coordinates and momenta, $\boldsymbol M$ is a symmetric non-singular matrix, and $V({\boldsymbol q})$ is a homogeneous function of degree $k\in\mathbb Z^{\star}$. We assume that the system admits $1\leqslant m<n$ independent and commuting first integrals $F_{1},\ldots F_{m}$. Our main results give easily computable and effective necessary conditions for the existence of one more additional first integral $F_{m+1}$ such that all integrals $F_{1},\ldots F_{m+1}$ are independent and pairwise commute. These conditions are derived from an analysis of the differential Galois group of variational equations along a particular solution of the system. We apply our result analysing the partial integrability of a certain $n$ body problem on a line and the planar three body problem.
Keywords: integrability, non-integrability criteria, monodromy group, differential Galois group, hypergeometric equation, Hamiltonian equations.
Received: 29.03.2010
Accepted: 12.04.2010
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: A. J. Maciejewski, M. Przybylska, “Partial integrability of Hamiltonian systems with homogeneous potential”, Regul. Chaotic Dyn., 15:4-5 (2010), 551–563
Citation in format AMSBIB
\Bibitem{MacPrz10}
\by A. J. Maciejewski, M. Przybylska
\paper Partial integrability of Hamiltonian systems with homogeneous potential
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 551--563
\mathnet{http://mi.mathnet.ru/rcd515}
\crossref{https://doi.org/10.1134/S1560354710040106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679764}
\zmath{https://zbmath.org/?q=an:1258.70021}
Linking options:
  • https://www.mathnet.ru/eng/rcd515
  • https://www.mathnet.ru/eng/rcd/v15/i4/p551
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024