|
This article is cited in 7 scientific papers (total in 7 papers)
On the 60th birthday of professor V.V. Kozlov
Partial integrability of Hamiltonian systems with homogeneous potential
A. J. Maciejewskia, M. Przybylskabc a J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65–417 Zielona Góra, Poland
b Toruń Centre for Astronomy, N. Copernicus University,
Gagarina 11, PL-87–100 Toruń, Poland
c Institute of Physics, University of Zielona Góra, Licealna 9, PL-65–417 Zielona Góra, Poland
Abstract:
In this paper we consider
systems with $n$ degrees of freedom given by the natural
Hamiltonian function of the form
\begin{equation*}
H=\frac{1}{2}{\boldsymbol p}^T{\boldsymbol M}{\boldsymbol p} +V({\boldsymbol q}),
\end{equation*}
where ${\boldsymbol q}=(q_1, \ldots, q_n)\in\mathbb C^n$, ${\boldsymbol p}=(p_1, \ldots,
p_n)\in\mathbb C^n$, are the canonical coordinates and momenta, $\boldsymbol M$ is a
symmetric non-singular matrix, and $V({\boldsymbol q})$ is a homogeneous function
of degree $k\in\mathbb Z^{\star}$. We assume that the system admits $1\leqslant
m<n$ independent and commuting first integrals $F_{1},\ldots F_{m}$.
Our main results give easily computable and effective necessary
conditions for the existence of one more additional first integral
$F_{m+1}$ such that all integrals $F_{1},\ldots F_{m+1}$ are
independent and pairwise commute. These conditions are derived from
an analysis of the differential Galois group of variational equations
along a particular solution of the system. We apply our result
analysing the partial integrability of a certain $n$ body problem on a
line and the planar three body problem.
Keywords:
integrability, non-integrability criteria, monodromy group, differential Galois group, hypergeometric equation, Hamiltonian equations.
Received: 29.03.2010 Accepted: 12.04.2010
Citation:
A. J. Maciejewski, M. Przybylska, “Partial integrability of Hamiltonian systems with homogeneous potential”, Regul. Chaotic Dyn., 15:4-5 (2010), 551–563
Linking options:
https://www.mathnet.ru/eng/rcd515 https://www.mathnet.ru/eng/rcd/v15/i4/p551
|
|