Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 532–550
DOI: https://doi.org/10.1134/S156035471004009X
(Mi rcd514)
 

This article is cited in 34 scientific papers (total in 34 papers)

On the 60th birthday of professor V.V. Kozlov

Poisson structures for geometric curve flows in semi-simple homogeneous spaces

G. Marí Beffaa, P. J. Olverb

a Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA
b School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
Citations (34)
Abstract: We apply the equivariant method of moving frames to investigate the existence of Poisson structures for geometric curve flows in semi-simple homogeneous spaces. We derive explicit compatibility conditions that ensure that a geometric flow induces a Hamiltonian evolution of the associated differential invariants. Our results are illustrated by several examples of geometric interest.
Keywords: moving frame, Poisson structure, homogeneous space, invariant curve flow, differential invariant, invariant variational bicomplex.
Received: 12.10.2009
Accepted: 13.03.2010
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: G. Marí Beffa, P. J. Olver, “Poisson structures for geometric curve flows in semi-simple homogeneous spaces”, Regul. Chaotic Dyn., 15:4-5 (2010), 532–550
Citation in format AMSBIB
\Bibitem{MarOlv10}
\by G. Mar{\'\i} Beffa, P. J. Olver
\paper Poisson structures for geometric curve flows in semi-simple homogeneous spaces
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 532--550
\mathnet{http://mi.mathnet.ru/rcd514}
\crossref{https://doi.org/10.1134/S156035471004009X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679763}
\zmath{https://zbmath.org/?q=an:1229.22018}
Linking options:
  • https://www.mathnet.ru/eng/rcd514
  • https://www.mathnet.ru/eng/rcd/v15/i4/p532
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024