Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 532–550
DOI: https://doi.org/10.1134/S156035471004009X
(Mi rcd514)
 

This article is cited in 34 scientific papers (total in 34 papers)

On the 60th birthday of professor V.V. Kozlov

Poisson structures for geometric curve flows in semi-simple homogeneous spaces

G. Marí Beffaa, P. J. Olverb

a Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA
b School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
Citations (34)
Abstract: We apply the equivariant method of moving frames to investigate the existence of Poisson structures for geometric curve flows in semi-simple homogeneous spaces. We derive explicit compatibility conditions that ensure that a geometric flow induces a Hamiltonian evolution of the associated differential invariants. Our results are illustrated by several examples of geometric interest.
Keywords: moving frame, Poisson structure, homogeneous space, invariant curve flow, differential invariant, invariant variational bicomplex.
Received: 12.10.2009
Accepted: 13.03.2010
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: G. Marí Beffa, P. J. Olver, “Poisson structures for geometric curve flows in semi-simple homogeneous spaces”, Regul. Chaotic Dyn., 15:4-5 (2010), 532–550
Citation in format AMSBIB
\Bibitem{MarOlv10}
\by G. Mar{\'\i} Beffa, P. J. Olver
\paper Poisson structures for geometric curve flows in semi-simple homogeneous spaces
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 532--550
\mathnet{http://mi.mathnet.ru/rcd514}
\crossref{https://doi.org/10.1134/S156035471004009X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679763}
\zmath{https://zbmath.org/?q=an:1229.22018}
Linking options:
  • https://www.mathnet.ru/eng/rcd514
  • https://www.mathnet.ru/eng/rcd/v15/i4/p532
  • This publication is cited in the following 34 articles:
    1. Talat Körpinar, Zeliha Körpinar, Mustafa Yeneroğlu, “Optical quantum electromagnetic binormal Heisenberg landau lifshitz electromotive microscale”, Opt Quant Electron, 56:1 (2024)  crossref
    2. Talat Körpinar, Zeliha Körpinar, “Optical ferromagnetic display electromotive microscale with electrical solitonic potential”, Optik, 297 (2024), 171516  crossref
    3. Talat Körpinar, Fatih Şevgİn, Zeliha Körpinar, “Optical wave propagation phase for mKdV spherical electric flux density in sphere space”, Opt Quant Electron, 56:3 (2024)  crossref
    4. Talat Körpinar, Zeliha Körpinar, “Optical electrical antiferromagnetic microfluidical mKDV magnetomotive phase”, Opt Quant Electron, 56:7 (2024)  crossref
    5. Talat Körpinar, Zeliha Körpinar, “Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame”, Int. J. Geom. Methods Mod. Phys., 20:10 (2023)  crossref
    6. Talat Körpinar, Zeliha Körpinar, Erdal Korkmaz, “Geometric Schrödinger microfluidic modeling for spherical ferromagnetic mKdV flux”, Int. J. Geom. Methods Mod. Phys., 20:11 (2023)  crossref
    7. Talat Körpinar, Zeliha Körpinar, “New modeling for Heisenberg velocity microfluidic of optical ferromagnetic mKdV flux”, Opt Quant Electron, 55:6 (2023)  crossref
    8. Talat Körp{\i}nar, Zeliha Körp{\i}nar, “New optical quantum effects of ferromagnetic electroosmotic phase”, Opt Quant Electron, 55:12 (2023)  crossref
    9. Talat Körpinar, Zeliha Körpinar, “Optical binormal landau lifshitz electromotive microscale with optimistic density”, Waves in Random and Complex Media, 2023, 1  crossref
    10. Zeliha Körpinar, Talat Körpinar, “New optical quasi normal antiferromagnetic microscale in Heisenberg algebra”, Int. J. Geom. Methods Mod. Phys., 20:06 (2023)  crossref
    11. Talat Körpinar, Zeliha Körpinar, “Antiferromagnetic complex electromotive microscale with first type Schrödinger frame”, Opt Quant Electron, 55:6 (2023)  crossref
    12. Talat Körpinar, Zeliha Körpinar, “Optical spherical microfluidic heisenberg spherical ferromagnetic model”, Opt Quant Electron, 55:13 (2023)  crossref
    13. Zeliha Korpinar, Mustafa Inc, Talat Korpinar, “Ferromagnetic recursion for geometric phase timelike ${\mathcal {S}}_{{N}}$-magnetic fibers”, Opt Quant Electron, 55:4 (2023)  crossref
    14. Talat Körpinar, Zeliha Körpinar, “Optical complex media for ferromagnetic spherical microfluidic optical mKdV magnetic flux density”, Waves in Random and Complex Media, 2023, 1  crossref
    15. Talat Körpinar, Zeliha Körpinar, Vedat Ası̇l, “Optical electromotive microscale with first type Schrödinger frame”, Optik, 276 (2023), 170629  crossref
    16. Talat Körpinar, Zeliha Körpinar, Vedat Ası̇l, “Optical modeling for hybrid visco ferromagnetic electromotive energy flux microscale”, Optik, 268 (2022), 169770  crossref
    17. Zeliha Körpinar, Talat Körpinar, “Optical normal antiferromagnetic electromotive microscale with optimistic density”, Optik, 261 (2022), 169019  crossref
    18. Talat Körpinar, Zeliha Körpinar, “New optical hybrid electric and magnetic B2-phase with Landau Lifshitz approach”, Waves in Random and Complex Media, 2022, 1  crossref
    19. Wang B., Chang X.-K., Hu X.-B., Li Sh.-H., “Discrete Invariant Curve Flows, Orthogonal Polynomials, and Moving Frame”, Int. Math. Res. Notices, 2021:14 (2021), 11050–11092  crossref  mathscinet  isi  scopus
    20. Francis Valiquette, “Symmetry Reduction of Ordinary Differential Equations Using Moving Frames”, JNMP, 25:2 (2021), 211  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:122
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025