Abstract:
We apply the equivariant method of moving frames to investigate the existence of Poisson structures for geometric curve flows in semi-simple homogeneous spaces. We derive explicit compatibility conditions that ensure that a geometric flow induces a Hamiltonian evolution of the associated differential invariants. Our results are illustrated by several examples of geometric interest.
Citation:
G. Marí Beffa, P. J. Olver, “Poisson structures for geometric curve flows in semi-simple homogeneous spaces”, Regul. Chaotic Dyn., 15:4-5 (2010), 532–550
Talat Körpinar, Fatih Şevgİn, Zeliha Körpinar, “Optical wave propagation phase for mKdV spherical electric flux density in sphere space”, Opt Quant Electron, 56:3 (2024)
Talat Körpinar, Zeliha Körpinar, “Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame”, Int. J. Geom. Methods Mod. Phys., 20:10 (2023)
Zeliha Korpinar, Mustafa Inc, Talat Korpinar, “Ferromagnetic recursion for geometric phase timelike ${\mathcal {S}}_{{N}}$-magnetic fibers”, Opt Quant Electron, 55:4 (2023)
Talat Körpinar, Zeliha Körpinar, “Optical complex media for ferromagnetic spherical microfluidic optical mKdV magnetic flux density”, Waves in Random and Complex Media, 2023, 1
Talat Körpinar, Zeliha Körpinar, Vedat Ası̇l, “Optical electromotive microscale with first type Schrödinger frame”, Optik, 276 (2023), 170629
Talat Körpinar, Zeliha Körpinar, Vedat Ası̇l, “Optical modeling for hybrid visco ferromagnetic electromotive energy flux microscale”, Optik, 268 (2022), 169770
Zeliha Körpinar, Talat Körpinar, “Optical normal antiferromagnetic electromotive microscale with optimistic density”, Optik, 261 (2022), 169019
Talat Körpinar, Zeliha Körpinar, “New optical hybrid electric and magnetic B2-phase with Landau Lifshitz approach”, Waves in Random and Complex Media, 2022, 1
Wang B., Chang X.-K., Hu X.-B., Li Sh.-H., “Discrete Invariant Curve Flows, Orthogonal Polynomials, and Moving Frame”, Int. Math. Res. Notices, 2021:14 (2021), 11050–11092
Francis Valiquette, “Symmetry Reduction of Ordinary Differential Equations Using Moving Frames”, JNMP, 25:2 (2021), 211