Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 504–520
DOI: https://doi.org/10.1134/S1560354710040076
(Mi rcd512)
 

This article is cited in 15 scientific papers (total in 15 papers)

On the 60th birthday of professor V.V. Kozlov

Contact complete integrability

B. Khesina, S. Tabachnikovb

a Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada
b Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
Citations (15)
Abstract: Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the existence of a canonical R×Rn1 structure on the leaves of the co-Legendrian foliation. Further, the above structure implies the existence of n commuting contact fields preserving a special contact 1-form, thus providing the geometric framework and establishing equivalence with previously known definitions of contact integrability. We also show that contact completely integrable systems are solvable in quadratures.
We present an example of contact complete integrability: the billiard system inside an ellipsoid in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a surprising acceleration mechanism for closed light-like billiard trajectories.
Keywords: complete integrability, contact structure, Legendrian foliation, pseudo-Euclidean geometry, billiard map.
Received: 02.10.2009
Accepted: 26.03.2010
Bibliographic databases:
Document Type: Personalia
MSC: 37J35, 37J55, 70H06
Language: English
Citation: B. Khesin, S. Tabachnikov, “Contact complete integrability”, Regul. Chaotic Dyn., 15:4-5 (2010), 504–520
Citation in format AMSBIB
\Bibitem{KheTab10}
\by B. Khesin, S. Tabachnikov
\paper Contact complete integrability
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 504--520
\mathnet{http://mi.mathnet.ru/rcd512}
\crossref{https://doi.org/10.1134/S1560354710040076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679761}
\zmath{https://zbmath.org/?q=an:1203.37094}
Linking options:
  • https://www.mathnet.ru/eng/rcd512
  • https://www.mathnet.ru/eng/rcd/v15/i4/p504
  • This publication is cited in the following 15 articles:
    1. José F. Cariñena, Partha Guha, “Lichnerowicz-Witten differential, symmetries and locally conformal symplectic structures”, Journal of Geometry and Physics, 210 (2025), 105418  crossref
    2. Hansjörg Geiges, Jakob Hedicke, Murat Sağlam, “Bott‐integrable Reeb flows on 3‐manifolds”, Journal of London Math Soc, 109:1 (2024)  crossref
    3. Manuel de León, Manuel Lainz, Asier López-Gordón, Xavier Rivas, “Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems”, Journal of Geometry and Physics, 187 (2023), 104787  crossref
    4. Nguyen Tien Zung, “A Conceptual Approach to the Problem of Action-Angle Variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833  crossref  mathscinet  zmath  isi  scopus
    5. Božidar Jovanović, Vladimir Jovanović, “Heisenberg Model in Pseudo-Euclidean Spaces II”, Regul. Chaotic Dyn., 23:4 (2018), 418–437  mathnet  crossref  mathscinet
    6. Sergyeyev A., “New Integrable (3+1)-Dimensional Systems and Contact Geometry”, Lett. Math. Phys., 108:2 (2018), 359–376  crossref  mathscinet  zmath  isi  scopus
    7. Božidar Jovanović, Vladimir Jovanović, “Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability”, Discrete & Continuous Dynamical Systems - A, 37:10 (2017), 5163  crossref
    8. Božidar Jovanović, “Noether symmetries and integrability in time-dependent Hamiltonian mechanics”, Theor. Appl. Mech., 43:2 (2016), 255–273  mathnet  crossref
    9. Matthew Strom Borman, Frol Zapolsky, “Quasimorphisms on contactomorphism groups and contact rigidity”, Geom. Topol., 19:1 (2015), 365  crossref
    10. Božidar Jovanović, Vladimir Jovanović, “Contact flows and integrable systems”, Journal of Geometry and Physics, 87 (2015), 217  crossref
    11. Božidar Jovanović, Vladimir Jovanović, “Geodesic and Billiard Flows on Quadrics in Pseudo-Euclidean Spaces: L–A Pairs and Chasles Theorem”, Int Math Res Notices, 2015:15 (2015), 6618  crossref
    12. Božidar Jovanović, “Heisenberg Model in Pseudo-Euclidean Spaces”, Regul. Chaotic Dyn., 19:2 (2014), 245–250  mathnet  crossref  mathscinet  zmath
    13. Eva Miranda, “Integrable systems and group actions”, Open Mathematics, 12:2 (2014), 240  crossref
    14. Andrey V. Tsiganov, “On a Trivial Family of Noncommutative Integrable Systems”, SIGMA, 9 (2013), 015, 13 pp.  mathnet  crossref  mathscinet
    15. Charles P. Boyer, “Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on $S^2\times S^3$”, SIGMA, 7 (2011), 058, 22 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:160
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025