Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 482–503
DOI: https://doi.org/10.1134/S1560354710040064
(Mi rcd511)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the 60th birthday of professor V.V. Kozlov

Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

Eugene Gutkinab

a Nicolaus Copernicus University (UMK), Chopina 12/18, Torun 87-100
b Mathematics Institute of the Polish Academy of Sciences (IMPAN), Sniadeckich 8, Warszawa 10, Poland
Citations (7)
Abstract: We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on $\mathbb{Z}$-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical $\mathbb{Z}$-periodic surface with a boundary are recurrent.
Keywords: (periodic) polygonal surface, geodesic, skew product, cross-section, displacement function, recurrence, transience, ergodicity.
Received: 12.03.2010
Accepted: 25.03.2010
Bibliographic databases:
Document Type: Personalia
MSC: 37C40, 37D50, 37E35
Language: English
Citation: Eugene Gutkin, “Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces”, Regul. Chaotic Dyn., 15:4-5 (2010), 482–503
Citation in format AMSBIB
\Bibitem{Gut10}
\by Eugene Gutkin
\paper Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 482--503
\mathnet{http://mi.mathnet.ru/rcd511}
\crossref{https://doi.org/10.1134/S1560354710040064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679760}
\zmath{https://zbmath.org/?q=an:1203.37037}
Linking options:
  • https://www.mathnet.ru/eng/rcd511
  • https://www.mathnet.ru/eng/rcd/v15/i4/p482
  • This publication is cited in the following 7 articles:
    1. Nagar A., Singh P., “Finiteness in Polygonal Billiards on Hyperbolic Plane”, Topol. Methods Nonlinear Anal., 58:2 (2021), 481–520  crossref  mathscinet  isi
    2. Krzysztof Frączek, Corinna Ulcigrai, “Non-ergodic $\mathbb{Z}$ -periodic billiards and infinite translation surfaces”, Invent. math., 197:2 (2014), 241  crossref
    3. Krzysztof Frączek, Corinna Ulcigrai, “Ergodic Directions for Billiards in a Strip with Periodically Located Obstacles”, Commun. Math. Phys., 327:2 (2014), 643  crossref
    4. Eugene Gutkin, “Billiard dynamics: An updated survey with the emphasis on open problems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22:2 (2012)  crossref
    5. JEAN-PIERRE CONZE, EUGENE GUTKIN, “On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces”, Ergod. Th. Dynam. Sys., 32:2 (2012), 491  crossref
    6. Krzysztof Frączek, Corinna Ulcigrai, “Ergodic properties of infinite extensions of area-preserving flows”, Math. Ann., 354:4 (2012), 1289  crossref
    7. Eugene Gutkin, “Capillary Floating and the Billiard Ball Problem”, J. Math. Fluid Mech., 14:2 (2012), 363  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:131
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025