Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 482–503
DOI: https://doi.org/10.1134/S1560354710040064
(Mi rcd511)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the 60th birthday of professor V.V. Kozlov

Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

Eugene Gutkinab

a Nicolaus Copernicus University (UMK), Chopina 12/18, Torun 87-100
b Mathematics Institute of the Polish Academy of Sciences (IMPAN), Sniadeckich 8, Warszawa 10, Poland
Citations (7)
Abstract: We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on $\mathbb{Z}$-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical $\mathbb{Z}$-periodic surface with a boundary are recurrent.
Keywords: (periodic) polygonal surface, geodesic, skew product, cross-section, displacement function, recurrence, transience, ergodicity.
Received: 12.03.2010
Accepted: 25.03.2010
Bibliographic databases:
Document Type: Personalia
MSC: 37C40, 37D50, 37E35
Language: English
Citation: Eugene Gutkin, “Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces”, Regul. Chaotic Dyn., 15:4-5 (2010), 482–503
Citation in format AMSBIB
\Bibitem{Gut10}
\by Eugene Gutkin
\paper Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 482--503
\mathnet{http://mi.mathnet.ru/rcd511}
\crossref{https://doi.org/10.1134/S1560354710040064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679760}
\zmath{https://zbmath.org/?q=an:1203.37037}
Linking options:
  • https://www.mathnet.ru/eng/rcd511
  • https://www.mathnet.ru/eng/rcd/v15/i4/p482
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024