Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 2-3, Pages 165–184
DOI: https://doi.org/10.1134/S1560354710020061
(Mi rcd486)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the 75th birthday of Professor L.P. Shilnikov

Shilnikov’s cross-map method and hyperbolic dynamics of three-dimensional Hénon-like maps

S. Gonchenkoa, M.-Ch. Lib

a Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University, Russia
b Department of Applied Mathematics and Center of Mathematical Modelling and Scientific Computing, National Chiao Tung University, Hsinchu, Taiwan
Citations (7)
Abstract: We study the hyperbolic dynamics of three-dimensional quadratic maps with constant Jacobian the inverse of which are again quadratic maps (the so-called 3D Hénon maps). We consider two classes of such maps having applications to the nonlinear dynamics and find certain sufficient conditions under which the maps possess hyperbolic nonwandering sets topologically conjugating to the Smale horseshoe. We apply the so-called Shilnikov’s crossmap for proving the existence of the horseshoes and show the existence of horseshoes of various types: (2,1)- and (1,2)-horseshoes (where the first (second) index denotes the dimension of stable (unstable) manifolds of horseshoe orbits) as well as horseshoes of saddle and saddle-focus types.
Keywords: quadratic map, Smale horseshoe, hyperbolic set, symbolic dynamics, saddle, saddlefocus.
Received: 11.11.2009
Accepted: 12.02.2010
Bibliographic databases:
Document Type: Personalia
MSC: 37C05, 37D20, 37B10
Language: English
Citation: S. Gonchenko, M.-Ch. Li, “Shilnikov’s cross-map method and hyperbolic dynamics of three-dimensional Hénon-like maps”, Regul. Chaotic Dyn., 15:2-3 (2010), 165–184
Citation in format AMSBIB
\Bibitem{GonLi10}
\by S. Gonchenko, M.-Ch. Li
\paper Shilnikov’s cross-map method and hyperbolic dynamics of three-dimensional Hénon-like maps
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 165--184
\mathnet{http://mi.mathnet.ru/rcd486}
\crossref{https://doi.org/10.1134/S1560354710020061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644328}
\zmath{https://zbmath.org/?q=an:1203.37029}
Linking options:
  • https://www.mathnet.ru/eng/rcd486
  • https://www.mathnet.ru/eng/rcd/v15/i2/p165
  • This publication is cited in the following 7 articles:
    1. Xu Zhang, Guanrong Chen, “Diffeomorphisms with infinitely many Smale horseshoes”, Journal of Difference Equations and Applications, 2024, 1  crossref
    2. Aikan Shykhmamedov, Efrosiniia Karatetskaia, Alexey Kazakov, Nataliya Stankevich, “Scenarios for the creation of hyperchaotic attractors in 3D maps”, Nonlinearity, 36:7 (2023), 3501  crossref
    3. Sajjad Bakrani, Jeroen S.W. Lamb, Dmitry Turaev, “Invariant manifolds of homoclinic orbits and the dynamical consequences of a super-homoclinic: A case study in R4 with Z2-symmetry and integral of motion”, Journal of Differential Equations, 327 (2022), 1  crossref
    4. Karatetskaia E., Shykhmamedov A., Kazakov A., “Shilnikov Attractors in Three-Dimensional Orientation-Reversing Maps”, Chaos, 31:1 (2021), 011102  crossref  mathscinet  isi  scopus
    5. Gonchenko S., Li M.-Ch., Malkin M., “Criteria on Existence of Horseshoes Near Homoclinic Tangencies of Arbitrary Orders”, Dynam. Syst., 33:3 (2018), 441–463  crossref  mathscinet  zmath  isi  scopus
    6. Xu Zhang, “Chaotic Polynomial Maps”, Int. J. Bifurcation Chaos, 26:08 (2016), 1650131  crossref
    7. Lorenzo J Díaz, Shin Kiriki, Katsutoshi Shinohara, “Blenders in centre unstable Hénon-like families: with an application to heterodimensional bifurcations”, Nonlinearity, 27:3 (2014), 353  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:155
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025