Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 2-3, Pages 159–164
DOI: https://doi.org/10.1134/S156035471002005X
(Mi rcd485)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the 75th birthday of Professor L.P. Shilnikov

Universal dynamics in a neighborhood of a generic elliptic periodic point

V. Gelfreicha, D. Turaevb

a Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, UK
b Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Citations (12)
Abstract: We show that a generic area-preserving two-dimensional map with an elliptic periodic point is $C^\omega$-universal, i.e., its renormalized iterates are dense in the set of all real-analytic symplectic maps of a two-dimensional disk. The results naturally extend onto Hamiltonian and volume-preserving flows.
Keywords: homoclinic tangency, wild hyperbolic set, Newhouse phenomenon, Hamiltonian system, area-preserving map, volume-preserving flow, exponentially small splitting, KAM theory.
Received: 03.11.2009
Accepted: 21.11.2009
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: V. Gelfreich, D. Turaev, “Universal dynamics in a neighborhood of a generic elliptic periodic point”, Regul. Chaotic Dyn., 15:2-3 (2010), 159–164
Citation in format AMSBIB
\Bibitem{GelTur10}
\by V. Gelfreich, D. Turaev
\paper Universal dynamics in a neighborhood of a generic elliptic periodic point
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 159--164
\mathnet{http://mi.mathnet.ru/rcd485}
\crossref{https://doi.org/10.1134/S156035471002005X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644327}
\zmath{https://zbmath.org/?q=an:1203.37100}
Linking options:
  • https://www.mathnet.ru/eng/rcd485
  • https://www.mathnet.ru/eng/rcd/v15/i2/p159
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024