Loading [MathJax]/jax/output/CommonHTML/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 3, Pages 345–382
DOI: https://doi.org/10.1134/S1560354715030090
(Mi rcd47)
 

This article is cited in 30 scientific papers (total in 30 papers)

Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models

Sergey P. Kuznetsov

Kotel’nikov’s Institute of Radio Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
Citations (30)
References:
Abstract: Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe–Kaneko, Belmonte–Eisenberg–Moses and Andersen–Pesavento–Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).
Keywords: body motion in a fluid, oscillations, autorotation, flutter, attractor, bifurcation, chaos, Lyapunov exponent.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation NSH-1726.2014.2
Russian Foundation for Basic Research 14-02-00085
This work was partially supported by a grant of the President of the Russian Federation for leading scientific schools NSH-1726.2014.2 “Fundamental problems of nonlinear dynamics and their applications” and RFBR grant 14-02-00085.
Received: 22.11.2014
Bibliographic databases:
Document Type: Article
MSC: 34C15, 76D99, 37E99
Language: English
Citation: Sergey P. Kuznetsov, “Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models”, Regul. Chaotic Dyn., 20:3 (2015), 345–382
Citation in format AMSBIB
\Bibitem{Kuz15}
\by Sergey P. Kuznetsov
\paper Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 3
\pages 345--382
\mathnet{http://mi.mathnet.ru/rcd47}
\crossref{https://doi.org/10.1134/S1560354715030090}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3357280}
\zmath{https://zbmath.org/?q=an:1327.34089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..345K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356354200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934944757}
Linking options:
  • https://www.mathnet.ru/eng/rcd47
  • https://www.mathnet.ru/eng/rcd/v20/i3/p345
  • This publication is cited in the following 30 articles:
    1. Wenhui Zhang, Yingjie Wei, “Large eddy simulations of free-falling perforated disks with small inertias”, International Journal of Multiphase Flow, 186 (2025), 105154  crossref
    2. Sung-Ik Sohn, “Simulation of the unsteady vortical flow of freely falling plates”, Theor. Comput. Fluid Dyn., 2024  crossref
    3. Wenhui Zhang, Dianfang Bi, Yingjie Wei, “Effect of Archimedes number on the dynamics of free-falling perforated disks”, Physics of Fluids, 36:1 (2024)  crossref
    4. A. V. Klekovkin, Yu. L. Karavaev, I. S. Mamaev, “The Control of an Aquatic Robot by a Periodic Rotation of the Internal Flywheel”, Rus. J. Nonlin. Dyn., 19:2 (2023), 265–279  mathnet  crossref
    5. Wenhui Zhang, Dianfang Bi, Yingjie Wei, “Effect of porosity on the kinematics of free-falling porous disks”, Physics of Fluids, 35:1 (2023)  crossref
    6. Yilin Dou, Kelei Wang, Zhou Zhou, Peter R. Thomas, Zhuang Shao, Wanshan Du, “Investigation of the Free-Fall Dynamic Behavior of a Rectangular Wing with Variable Center of Mass Location and Variable Moment of Inertia”, Aerospace, 10:5 (2023), 458  crossref
    7. Huilin Li, Tristan Goodwill, Z. Jane Wang, Leif Ristroph, “Centre of mass location, flight modes, stability and dynamic modelling of gliders”, J. Fluid Mech., 937 (2022)  crossref
    8. Mamaev I.S. Bizyaev I.A., “Dynamics of An Unbalanced Circular Foil and Point Vortices in An Ideal Fluid”, Phys. Fluids, 33:8 (2021), 087119  crossref  mathscinet  isi  scopus
    9. Xu T. Li J. Li Zh. Liao Sh., “Accurate Predictions of Chaotic Motion of a Free Fall Disk”, Phys. Fluids, 33:3 (2021), 037111  crossref  isi  scopus
    10. E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57  mathnet  crossref  elib
    11. A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427  crossref  mathscinet  zmath  isi  scopus
    12. T. Howison, J. Hughes, F. Giardina, F. Iida, “Physics driven behavioural clustering of free-falling paper shapes”, PLoS One, 14:6 (2019), e0217997  crossref  isi  scopus
    13. T. A. Gurina, “Bifurkatsionnoe issledovanie perekhoda k khaosu v kolebatelnoi sisteme dvizheniya plastinki v zhidkosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:1 (2019), 3–18  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    14. E. M. Lau, W.-X. Huang, Ch.-X. Xu, “Progression of heavy plates from stable falling to tumbling flight”, J. Fluid Mech., 850 (2018), 1009–1031  crossref  zmath  isi  scopus
    15. A. B. Rostami, A. C. Fernandes, “Mathematical model and stability analysis of fluttering and autorotation of an articulated plate into a flow”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 544–560  crossref  mathscinet  isi  scopus
    16. E. V. Vetchanin, E. S. Gladkov, “Identifikatsiya parametrov modeli dvizheniya toroidalnogo tela na osnove eksperimentalnykh dannykh”, Nelineinaya dinam., 14:1 (2018), 99–121  mathnet  crossref  elib
    17. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    18. Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820  mathnet  crossref
    19. Alexey V. Borisov, Ivan S. Mamaev, Evgeny V. Vetchanin, “Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7-8 (2018), 850–874  mathnet  crossref
    20. I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:282
    References:67
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025