Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 3, Pages 317–344
DOI: https://doi.org/10.1134/S1560354715030089
(Mi rcd46)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra so(4)

Rasoul Akbarzadeh, Ghorbanali Haghighatdoost

Azarbaijan Shahid Madani University, 35 Km Tabriz-Maragheh Road, Tabriz, Iran
Citations (6)
References:
Abstract: In 2001, A.V. Borisov, I.S. Mamaev, and V.V. Sokolov discovered a new integrable case on the Lie algebra so(4). This system coincides with the Poincaré equations on the Lie algebra so(4), which describe the motion of a body with cavities filled with an incompressible vortex fluid. Moreover, the Poincaré equations describe the motion of a four-dimensional gyroscope. In this paper topological properties of this system are studied. In particular, for the system under consideration the bifurcation diagrams of the momentum mapping are constructed and all Fomenko invariants are calculated. Thereby, a classification of isoenergy surfaces for this system up to the rough Liouville equivalence is obtained.
Keywords: integrable Hamiltonian systems, isoenergy surfaces, Kirchhoff equations, Liouville foliation, bifurcation diagram, Borisov–Mamaev–Sokolov case, topological invariant.
Received: 06.03.2015
Bibliographic databases:
Document Type: Article
MSC: 37J35, 70H06
Language: English
Citation: Rasoul Akbarzadeh, Ghorbanali Haghighatdoost, “The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra so(4)”, Regul. Chaotic Dyn., 20:3 (2015), 317–344
Citation in format AMSBIB
\Bibitem{AkbHag15}
\by Rasoul Akbarzadeh, Ghorbanali Haghighatdoost
\paper The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra $so(4)$
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 3
\pages 317--344
\mathnet{http://mi.mathnet.ru/rcd46}
\crossref{https://doi.org/10.1134/S1560354715030089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3357279}
\zmath{https://zbmath.org/?q=an:06488660}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..317A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356354200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934897371}
Linking options:
  • https://www.mathnet.ru/eng/rcd46
  • https://www.mathnet.ru/eng/rcd/v20/i3/p317
  • This publication is cited in the following 6 articles:
    1. Vladimir Dragović, Fariba Khoshnasib-Zeinabad, “Topology of the isoenergy manifolds of the Kirchhoff rigid body case on e(3)”, Topology and its Applications, 311 (2022), 107955  crossref
    2. R. Akbarzadeh, “The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra so(3,1)”, Theoret. and Math. Phys., 197:3 (2018), 1727–1736  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517–525  crossref  mathscinet  zmath  isi  scopus
    4. P. E. Ryabov, “Explicit integration of the system of invariant relations for the case of M. Adler and P. van Moerbeke”, Dokl. Math., 95:1 (2017), 17–20  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    5. Rasoul Akbarzadeh, “Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra so(4)”, Regul. Chaotic Dyn., 21:1 (2016), 1–17  mathnet  crossref  mathscinet  zmath
    6. Pavel E. Ryabov, Andrej A. Oshemkov, Sergei V. Sokolov, “The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram”, Regul. Chaotic Dyn., 21:5 (2016), 581–592  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :1
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025