Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 5, Pages 439–450
DOI: https://doi.org/10.1134/S1560354712050061
(Mi rcd414)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems

Andrey V. Tsiganov

St.Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia
Citations (16)
Abstract: We discuss a Poisson structure, linear in momenta, for the generalized nonholonomic Chaplygin sphere problem and the $LR$ Veselova system. Reduction of these structures to the canonical form allows one to prove that the Veselova system is equivalent to the Chaplygin ball after transformations of coordinates and parameters.
Keywords: nonholonomic mechanics, Poisson brackets.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
The work was done at the Udmurt State University and was supported by the Grant Program of the Government of the Russian Federation for Support for the Scientific Research Project implemented under the supervision of leading scientists at Russian institutions of higher education (11.G34.31.0039).
Received: 20.05.2012
Accepted: 30.07.2012
Bibliographic databases:
Document Type: Article
MSC: 37J60
Language: English
Citation: Andrey V. Tsiganov, “On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems”, Regul. Chaotic Dyn., 17:5 (2012), 439–450
Citation in format AMSBIB
\Bibitem{Tsi12}
\by Andrey V. Tsiganov
\paper On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 5
\pages 439--450
\mathnet{http://mi.mathnet.ru/rcd414}
\crossref{https://doi.org/10.1134/S1560354712050061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2989516}
\zmath{https://zbmath.org/?q=an:1263.37074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..439T}
Linking options:
  • https://www.mathnet.ru/eng/rcd414
  • https://www.mathnet.ru/eng/rcd/v17/i5/p439
  • This publication is cited in the following 16 articles:
    1. Andrey V. Tsiganov, “Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186  mathnet  crossref
    2. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    3. Jovanovic B., “Rolling Balls Over Spheres in R-N”, Nonlinearity, 31:9 (2018), 4006–4030  crossref  mathscinet  zmath  isi  scopus
    4. Andrey V. Tsiganov, “Bäcklund Transformations for the Nonholonomic Veselova System”, Regul. Chaotic Dyn., 22:2 (2017), 163–179  mathnet  crossref
    5. Andrey V. Tsiganov, “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367  mathnet  crossref  isi  scopus
    6. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hojman Construction and Hamiltonization of Nonholonomic Systems”, SIGMA, 12 (2016), 012, 19 pp.  mathnet  crossref
    7. Andrey V. Tsiganov, “On Integrable Perturbations of Some Nonholonomic Systems”, SIGMA, 11 (2015), 085, 19 pp.  mathnet  crossref
    8. A. V. Bolsinov, A. A. Kilin, A. O. Kazakov, “Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?”, J. Geom. Phys., 87 (2015), 61–75  mathnet  crossref
    9. A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Math. Surveys, 69:3 (2014), 481–538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. Andrey V. Tsiganov, “On the Lie Integrability Theorem for the Chaplygin Ball”, Regul. Chaotic Dyn., 19:2 (2014), 185–197  mathnet  crossref  mathscinet  zmath
    11. Andrey Tsiganov, “Poisson structures for two nonholonomic systems with partially reduced symmetries”, Journal of Geometric Mechanics, 6:3 (2014), 417  crossref
    12. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859  mathnet  crossref  mathscinet  zmath
    13. A. V. Bolsinov, A. A. Kilin, A. O. Kazakov, “Topologicheskaya monodromiya v negolonomnykh sistemakh”, Nelineinaya dinam., 9:2 (2013), 203–227  mathnet
    14. A. V. Tsyganov, “O share Chaplygina v absolyutnom prostranstve”, Nelineinaya dinam., 9:4 (2013), 711–719  mathnet
    15. Andrey V. Tsiganov, “On a Trivial Family of Noncommutative Integrable Systems”, SIGMA, 9 (2013), 015, 13 pp.  mathnet  crossref  mathscinet
    16. I A Bizyaev, A V Tsiganov, “On the Routh sphere problem”, J. Phys. A: Math. Theor., 46:8 (2013), 085202  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:136
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025