Abstract:
In this paper, we study a nonholonomic mechanical system, namely, the Suslov problem with the Clebsch–Tisserand potential. We analyze the topology of the level sets defined by the integrals in two ways: using an explicit construction and as a consequence of the Poincaré–Hopf theorem. We describe the flow on such manifolds.
\Bibitem{HuSan18}
\by Shengda Hu, Manuele Santoprete
\paper Suslov Problem with the Clebsch–Tisserand Potential
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 2
\pages 193--211
\mathnet{http://mi.mathnet.ru/rcd318}
\crossref{https://doi.org/10.1134/S1560354718020053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429363300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045004653}
Linking options:
https://www.mathnet.ru/eng/rcd318
https://www.mathnet.ru/eng/rcd/v23/i2/p193
This publication is cited in the following 1 articles:
A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598