Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 2, Pages 178–192
DOI: https://doi.org/10.1134/S1560354718020041
(Mi rcd317)
 

This article is cited in 17 scientific papers (total in 17 papers)

Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint

Sergey P. Kuznetsovab

a Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (17)
References:
Abstract: The main goal of the article is to suggest a two-dimensional map that could play the role of a generalized model similar to the standard Chirikov–Taylor mapping, but appropriate for energy-conserving nonholonomic dynamics. In this connection, we consider a Chaplygin sleigh on a plane, supposing that the nonholonomic constraint switches periodically in such a way that it is located alternately at each of three legs supporting the sleigh. We assume that at the initiation of the constraint the respective element (“knife edge”) is directed along the local velocity vector and becomes instantly fixed relative to the sleigh till the next switch. Differential equations of the mathematical model are formulated and an analytical derivation of mapping for the state evolution on the switching period is provided. The dynamics take place with conservation of the mechanical energy, which plays the role of one of the parameters responsible for the type of the dynamic behavior. At the same time, the Liouville theorem does not hold, and the phase volume can undergo compression or expansion in certain state space domains. Numerical simulations reveal phenomena characteristic of nonholonomic systems with complex dynamics (like the rattleback or the Chaplygin top). In particular, on the energy surface attractors associated with regular sustained motions can occur, settling in domains of prevalent phase volume compression together with repellers in domains of the phase volume expansion. In addition, chaotic and quasi-periodic regimes take place similar to those observed in conservative nonlinear dynamics.
Keywords: nonholonomic mechanics, Chaplygin sleigh, attractor, chaos, bifurcation, Chirikov–Taylor map.
Funding agency Grant number
Russian Science Foundation 15-12-20035
This work was supported by the Russian Science Foundation, grant № 15-12-20035.
Received: 09.11.2017
Accepted: 04.12.2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192
Citation in format AMSBIB
\Bibitem{Kuz18}
\by Sergey P. Kuznetsov
\paper Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 2
\pages 178--192
\mathnet{http://mi.mathnet.ru/rcd317}
\crossref{https://doi.org/10.1134/S1560354718020041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429363300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045007553}
Linking options:
  • https://www.mathnet.ru/eng/rcd317
  • https://www.mathnet.ru/eng/rcd/v23/i2/p178
  • This publication is cited in the following 17 articles:
    1. Marina S. Gonchenko, Alexey O. Kazakov, Evgeniya A. Samylina, Aikan Shykhmamedov, “On 1:3 Resonance Under Reversible Perturbations of Conservative Cubic Hénon Maps”, Regul. Chaotic Dyn., 27:2 (2022), 198–216  mathnet  crossref  mathscinet
    2. E. M. Artemova, A. A. Kilin, Yu. V. Korobeinikova, “Issledovanie orbitalnoi ustoichivosti pryamolineinykh kachenii roller-reisera po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 615–629  mathnet  crossref  mathscinet
    3. E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707  mathnet  crossref  mathscinet
    4. Meghan Rhodes, Vakhtang Putkaradze, “Trajectory tracing in figure skating”, Nonlinear Dyn, 110:4 (2022), 3031  crossref
    5. Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1  crossref
    6. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    7. A. A. Kilin, E. N. Pivovarova, “Neintegriruemost zadachi o kachenii sfericheskogo volchka po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 628–644  mathnet  crossref
    8. I. A. Bizyaev, I. S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    9. Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    10. S. P. Kuznetsov, “Complex Dynamics in Generalizations of the Chaplygin Sleigh”, Rus. J. Nonlin. Dyn., 15:4 (2019), 551–559  mathnet  crossref  elib
    11. Andrey A. Ardentov, Yury L. Karavaev, Kirill S. Yefremov, “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328  mathnet  crossref
    12. A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598  mathnet  crossref
    13. A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427  crossref  mathscinet  zmath  isi  scopus
    14. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, E. A. Samylina, “Chaotic dynamics and multistability in the nonholonomic model of a celtic stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786  crossref  isi  scopus
    15. A. O. Kazakov, “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems”, Radiophys. Quantum Electron., 61:8-9 (2019), 650–658  crossref  isi  scopus
    16. I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn., 95:1 (2019), 699–714  crossref  isi  scopus
    17. Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:333
    References:61
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025