Abstract:
The main goal of the article is to suggest a two-dimensional map that could play the role of a generalized model similar to the standard Chirikov–Taylor mapping, but appropriate for energy-conserving nonholonomic dynamics. In this connection, we consider a Chaplygin sleigh on a plane, supposing that the nonholonomic constraint switches periodically in such a way that it is located alternately at each of three legs supporting the sleigh. We assume that at the initiation of the constraint the respective element (“knife edge”) is directed along the local velocity vector and becomes instantly fixed relative to the sleigh till the next switch. Differential equations of the mathematical model are formulated and an analytical derivation of mapping for the state evolution on the switching period is provided. The dynamics take place with conservation of the mechanical energy, which plays the role of one of the parameters responsible for the type of the dynamic behavior. At the same time, the Liouville theorem does not hold, and the phase volume can undergo compression or expansion in certain state space domains. Numerical simulations reveal phenomena characteristic of nonholonomic systems with complex dynamics (like the rattleback or the Chaplygin top). In particular, on the energy surface attractors associated with regular sustained motions can occur, settling in domains of prevalent phase volume compression together with repellers in domains of the phase volume expansion. In addition, chaotic and quasi-periodic regimes take place similar to those observed in conservative nonlinear dynamics.
This work was supported by the Russian Science Foundation, grant № 15-12-20035.
Received: 09.11.2017 Accepted: 04.12.2017
Bibliographic databases:
Document Type:
Article
Language: English
Citation:
Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192
\Bibitem{Kuz18}
\by Sergey P. Kuznetsov
\paper Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 2
\pages 178--192
\mathnet{http://mi.mathnet.ru/rcd317}
\crossref{https://doi.org/10.1134/S1560354718020041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429363300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045007553}
Linking options:
https://www.mathnet.ru/eng/rcd317
https://www.mathnet.ru/eng/rcd/v23/i2/p178
This publication is cited in the following 17 articles:
Marina S. Gonchenko, Alexey O. Kazakov, Evgeniya A. Samylina, Aikan Shykhmamedov, “On 1:3 Resonance Under Reversible Perturbations
of Conservative Cubic Hénon Maps”, Regul. Chaotic Dyn., 27:2 (2022), 198–216
E. M. Artemova, A. A. Kilin, Yu. V. Korobeinikova, “Issledovanie orbitalnoi ustoichivosti pryamolineinykh kachenii roller-reisera po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 615–629
E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability
of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707
Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236
A. A. Kilin, E. N. Pivovarova, “Neintegriruemost zadachi o kachenii sfericheskogo volchka po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 628–644
I. A. Bizyaev, I. S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550
Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1
S. P. Kuznetsov, “Complex Dynamics in Generalizations of the Chaplygin Sleigh”, Rus. J. Nonlin. Dyn., 15:4 (2019), 551–559
Andrey A. Ardentov, Yury L. Karavaev, Kirill S. Yefremov, “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328
A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598
A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427
A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, E. A. Samylina, “Chaotic dynamics and multistability in the nonholonomic model of a celtic stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786
A. O. Kazakov, “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems”, Radiophys. Quantum Electron., 61:8-9 (2019), 650–658
I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn., 95:1 (2019), 699–714
Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820