Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 4, Pages 353–367
DOI: https://doi.org/10.1134/S1560354717040025
(Mi rcd260)
 

This article is cited in 12 scientific papers (total in 12 papers)

Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball

Andrey V. Tsiganov

St. Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia
Citations (12)
References:
Abstract: The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
Keywords: nonholonomic systems, Abel quadratures, arithmetic of divisors.
Funding agency Grant number
Russian Science Foundation 15-11-30007
This work was supported by the Russian Science Foundation (project 15-11-30007).
Received: 10.04.2017
Accepted: 05.06.2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Andrey V. Tsiganov, “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367
Citation in format AMSBIB
\Bibitem{Tsi17}
\by Andrey V. Tsiganov
\paper Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 4
\pages 353--367
\mathnet{http://mi.mathnet.ru/rcd260}
\crossref{https://doi.org/10.1134/S1560354717040025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407398500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026852386}
Linking options:
  • https://www.mathnet.ru/eng/rcd260
  • https://www.mathnet.ru/eng/rcd/v22/i4/p353
  • This publication is cited in the following 12 articles:
    1. Andrey V. Tsiganov, “Equivalent Integrable Metrics on the Sphere with Quartic Invariants”, SIGMA, 18 (2022), 094, 19 pp.  mathnet  crossref  mathscinet
    2. A. V. Tsiganov, “Discretization and superintegrability all rolled into one”, Nonlinearity, 33:9 (2020), 4924–4939  crossref  mathscinet  zmath  isi  scopus
    3. B. Gajić, B. Jovanović, “Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$”, Rus. J. Nonlin. Dyn., 15:4 (2019), 457–475  mathnet  crossref  elib
    4. Andrey V. Tsiganov, “Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186  mathnet  crossref
    5. A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598  mathnet  crossref
    6. A. V. Tsiganov, “Elliptic curve arithmetic and superintegrable systems”, Phys. Scr., 94:8 (2019), 085207  crossref  isi  scopus
    7. B. Gajic, B. Jovanovic, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
    8. A. V. Tsiganov, “Backlund transformations and divisor doubling”, J. Geom. Phys., 126:SI (2018), 148–158  crossref  mathscinet  zmath  isi  scopus
    9. A. V. Tsiganov, “Duffing Oscillator and Elliptic Curve Cryptography”, Nelin. Dinam., 14:2 (2018), 235–241  mathnet  crossref  elib
    10. A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoret. and Math. Phys., 197:3 (2018), 1806–1822  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. Andrey V. Tsiganov, “On Discretization of the Euler Top”, Regul. Chaotic Dyn., 23:6 (2018), 785–796  mathnet  crossref
    12. A. V. Tsiganov, “On exact discretization of cubic-quintic Duffing oscillator”, J. Math. Phys., 59:7 (2018), 072703  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:237
    References:51
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025