Abstract:
We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs. The local structure of these systems is under control of a linear ordinary differential equation of order n which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in H2 or in R2.
Citation:
Galliano Valent, “Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)”, Regul. Chaotic Dyn., 22:4 (2017), 319–352
\Bibitem{Val17}
\by Galliano Valent
\paper Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 4
\pages 319--352
\mathnet{http://mi.mathnet.ru/rcd259}
\crossref{https://doi.org/10.1134/S1560354717040013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407398500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026886368}
Linking options:
https://www.mathnet.ru/eng/rcd259
https://www.mathnet.ru/eng/rcd/v22/i4/p319
This publication is cited in the following 10 articles:
Sergei V. Agapov, Maria V. Demina, “Integrable geodesic flows and metrisable second-order ordinary differential equations”, Journal of Geometry and Physics, 199 (2024), 105168
Jaume Giné, Dmitry I. Sinelshchikov, “On the geometric and analytical properties of the anharmonic oscillator”, Communications in Nonlinear Science and Numerical Simulation, 131 (2024), 107875
Galliano Valent, “Superintegrability on the hyperbolic plane with integrals of any degree ≥2”, Journal of Geometry and Physics, 183 (2023), 104686
Allan P Fordy, Qing Huang, “Integrable and superintegrable extensions of the rational Calogero–Moser model in three dimensions”, J. Phys. A: Math. Theor., 55:22 (2022), 225203
A. P. Fordy, Q. Huang, “Adding potentials to superintegrable systems with symmetry”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 477:2248 (2021), 20200800
G. Valent, “Superintegrable geodesic flows versus Zoll metrics”, J. Geom. Phys., 159 (2021), 103873
A. P. Fordy, Q. Huang, “Superintegrable systems on 3 dimensional conformally flat spaces”, J. Geom. Phys., 153 (2020), 103687
Allan P. Fordy, Qing Huang, “Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems”, SIGMA, 15 (2019), 037, 30 pp.
A. P. Fordy, A. Galajinsky, “Eisenhart lift of 2-dimensional mechanics”, Eur. Phys. J. C, 79:4 (2019), 301
A. Bolsinov, V. S. Matveev, E. Miranda, S. Tabachnikov, “Open problems, questions and challenges in finite-dimensional integrable systems”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 376:2131 (2018), 20170430