Abstract:
We discuss the dynamics of a balanced body of spherical shape on a rough plane, controlled by the movement of a built-in shell. These two shells are set in relative motion due to rotation of the two symmetrical omniwheels. It is shown that the ball can be moved to any point on the plane along a straight or (in the case of the initial degeneration) polygonal line. Moreover, any prescribed curvilinear trajectory of the ball center can be followed by an appropriate control strategy as far as the diameter connecting both wheels is nonvertical.
This work was partially supported by the Russian Foundation for Basic Research (project 14-01-00432) within the framework of the Russian Federation task No. 2014/120.
\Bibitem{Iva15}
\by Alexander P. Ivanov
\paper On the Control of a Robot Ball Using Two Omniwheels
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 441--448
\mathnet{http://mi.mathnet.ru/rcd24}
\crossref{https://doi.org/10.1134/S1560354715040036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376600}
\zmath{https://zbmath.org/?q=an:06507834}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..441I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500003}
\elib{https://elibrary.ru/item.asp?id=23996081}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938583847}
Linking options:
https://www.mathnet.ru/eng/rcd24
https://www.mathnet.ru/eng/rcd/v20/i4/p441
This publication is cited in the following 16 articles:
E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193
A.Y. Shamin, A.A. Rachkov, “On periodic modes of motion of a vibrating robot in a horizontal plane with anisotropic friction”, Acta Astronautica, 2024
A. Y. Shamin, A. A. Rachkov, “On the Motion of a Vibrating Robot on a Horizontal Plane with Anisotropic Friction”, Rus. J. Nonlin. Dyn., 20:5 (2024), 945–959
Yu. L. Karavaev, “Spherical Robots:
An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750
Marek Bujnak, Rastislav Pirnik, Pavol Kuchar, Alzbeta Kanalikova, 2022 ELEKTRO (ELEKTRO), 2022, 1
Marek Bujňák, Rastislav Pirník, Karol Rástočný, Aleš Janota, Dušan Nemec, Pavol Kuchár, Tomáš Tichý, Zbigniew Łukasik, “Spherical Robots for Special Purposes: A Review on Current Possibilities”, Sensors, 22:4 (2022), 1413
Alexander P. Ivanov, “Singularities in the rolling motion of a spherical robot”, International Journal of Non-Linear Mechanics, 145 (2022), 104061
Marat Dosaev, “Algorithm for controlling an inertioid robot with a flywheel and an unbalance in conditions of restrictions on the angular acceleration of the unbalance”, Applied Mathematical Modelling, 109 (2022), 797
Dosaev M. Samsonov V. Hwang Sh.-Sh., “Construction of Control Algorithm in the Problem of the Planar Motion of a Friction-Powered Robot With a Flywheel and An Eccentric Weight”, Appl. Math. Model., 89:2 (2021), 1517–1527
B. I. Adamov, G. R. Saipulaev, “Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (as Exemplified by KUKA youBot)”, Rus. J. Nonlin. Dyn., 16:2 (2020), 291–307
T. B. Ivanova, A. A. Kilin, E. N. Pivovarova, “Controlled motion of a spherical robot with feedback. I”, J. Dyn. Control Syst., 24:3 (2018), 497–510
B. I. Adamov, “A Study of the Controlled Motion of a Four-wheeled Mecanum Platform”, Nelin. Dinam., 14:2 (2018), 265–290
Yang Bai, Mikhail Svinin, Motoji Yamamoto, “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388
Mehdi Roozegar, Mohammad J. Mahjoob, Moosa Ayati, “Adaptive Estimation of Nonlinear Parameters of a Nonholonomic Spherical Robot Using a Modified Fuzzy-based Speed Gradient Algorithm”, Regul. Chaotic Dyn., 22:3 (2017), 226–238
H. Kang, C. Liu, Ya.-B. Jia, “Inverse dynamics and energy optimal trajectories for a wheeled mobile robot”, Int. J. Mech. Sci., 134 (2017), 576–588
E. V. Vetchanin, A. A. Kilin, “Control of body motion in an ideal fluid using the internal mass and the rotor in the presence of circulation around the body”, J. Dyn. Control Syst., 23:2 (2017), 435–458